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1.0 INTRODUCTION

The first year’s effort on NASA Grant NAGS-2006 was an investigation to characterize typ-
ical errors resulting from the EOS dorn link. The analysis methods developed for this effort were
used on test data from a March 1992 White Sands Terminal Test.

The effectiveness of a concatenated coding scheme of a Reed Solomon outer code and a con-
volutional inner code versus a Reed Solomon only code scheme has been investigated as well as the
effectiveness of a Periodic Convolutional Interleaver in dispersing errors of certain types.

The work effort consisted of development of software that allows simulation studies with
the appropriate coding schemes plus either simulated data with errors or actual data with errors. The
annual report dated July 1, 1992 to December 30, 1992, Appendix I, reports in detail on the software
tools developed and delivered to NASA/GSFC. The software program is entitled Communication
Link Error Analysis (CLEAN) and models downlink errors, forward error correcting schemes, and
interleavers.

The quarterly report, January 1993 to March 30, 1993, Appendix II, details the analysis of
the real error sequence from the Ku-band downlink obtained from NASA/GSFC in February 1993.
This error stream was analyzed using statistical tests. The Ku-band downlink errors through the
TDRS to White Sands link are shown to be random errors. This conclusion is drawn by (1) compar-
ing the empirical error interval distribution from the real EOS data to the theoretical error interval
distribution assuming random occurrences of error pairs at the NRZM decoder output and (2) per-
forming the CVM (CRAMER VON-MISES) distribution test on a subset of the real data. In this
quarterly report, a study of the performance of the (255, 223) Reed-Solomon (RS) code on bursty
errors is also present as well as a brief study dealing with synchronization for the CCSDS transfer
frame format which includes a 32 bit PN sequence header.

The report in Appendix III report gives a summary of the work from July 1, 1992 to June
30, 1993 as well as giving a set of curves comparing various coding scheme performances as deter-
mined via CLEAN for NRZM decoding. These curves are presented for RS Coding, Convolutional
Coding, DPCI/Convolutional Coding, Concatenated Coding, RS Coding with erasure decoding.
These codes were compared for decoded bit error rate performance for Random-Error Channels and
Bursty-Error Channels. The Bursty Error Channels are analyzed for different mixes of bursts versus
random errors.

Comments on Rice Compression pitfalls is also included in the Appendix III material.
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L. INTRODUCTION

This report describes research performed to date on NASA Grant NAG5-2006 for the
period July 1, 1992 through December 1, 1992. This work involves studying the performance of

forward error correcting coding schemes on errors anticipated for the Earth Observation System
(EOS) Ku-band downlink.

The EOS transmits picture frame data to the ground via the Telemetry Data Relay Satellite
System (TDRSS) to a ground-based receiver at White Sands. Due to unintentional RF interfer-
ence from other systems operating in the Ku band, the noise at the receiver is non-Gaussian
which may result in non-random errors output by the demodulator. That is, the downlink chan-
nel cannot be modeled by a simple memoryless Gaussian-noise channel. From previous experi-
ence, it is believed that those errors are bursty.

The research has proceeded by developing a computer based simulation, called Communi-
cation Link Error ANalysis (CLEAN), to model the downlink errors, forward error correcting
schemes, and interleavers used with TDRSS. To date, the bulk of CLEAN, described in Sections
3,4, and 5, has been written, documented, debugged, and verified. The procedures for utilizing
CLEAN to investigate code performance have been established and will be discussed in Section
5.



II. SOURCE CODE GENERAL DESCRIPTION

Each system component (decoder, deinterleaver, etc.) has been implemented in CLEAN as
separate executable computer programs which interface with each other through data files
including an error sequence data file. This allows them to be executed sequentially via a batch
file.

All computer programs read parameters from a separate ASCII parameter file with a fixed
default name. The default name for the parameter file is the same as the executable but has the
extension ’prm’. Also, there is a global parameter file, ’ID.prm’, which contains a simulation
identifier (ID). Each program generates an output file with an extension identical to this ID.
This output file contains all the calculated statistics and estimated parameters from the program.
This allows all the files generated by a specific run to be quickly identified and distinguished
from data files generated by other runs.

To conduct the studies, a batch file is created which contains a series of executable pro-
grams. The type and order of the executables in the batch file implements a particular system
configuration. For example, if the user chooses to use a Reed-Solomon (RS) decoder to decode a
sequence of random errors, then the batch file contains two executables; the first generates a ran-
dom error sequence and the second uses an RS decoder to correct them. In general, the batch file
contains one of the channel error sequence generation programs which will generate an error
sequence stored in file name ’error.seq’. Each program which is executed makes use of and/or
modifies that error sequence and generates statistics and other outputs for the error pattern.

The programs have been written with parameter bounds in mind. For example, the pro-
grams are designed so that the lowest channel average error probability to be investigated, coded
or uncoded, is roughly 10°°. Along with this, it is assumed that 20 errors are the minimum num-
ber required to characterize the statistics of the channel, however, in general many more errors
will be generated per sequence. Thus as an upper bound, generating an error sequence, coded or
uncoded, with an error probability of 10 requires a minimum of 20/10°® = 2x10’ error sequence
values. The error sequence file is stored in a "packed" format so that 15 error sequence values
are stored per two bytes of memory. Therefore, the largest error sequence file is 2x107/(2/15) =
2.67Mbytes. This is sufficiently small so that allowable disc space on most computers can
accommodate several files at once. In general, error files are nof stored but are generated on the
fly. Results can be reproduced by regenerating an error sequence given the proper random num-
ber generator and the seed. If it turns out that regenerating the error sequence takes too long,
then a set of error sequences can be generated and stored on disc or magnetic tape to be retrieved
when required.



All programs have been documented upon completion with a documentation test run. All
the generated documentation is stored in a common binder for later reference.

Each program conforms to a documentation standard which includes a program/subrouti-
ne/function header as well as line comments within the code. On average, there should be a
comment line per 6 lines of code to indicate the purpose of the next few lines of code. The rou-
tine header takes the following form:

ctt***ii****ti***itii*ii**i***f***i*it*it*i**ii***ti**********ii**i**i
C*
c* - Program/Subroutine/Function name: name (Acronym meaning)

c* - Purpose: This program/subroutine/function ...

c* - Revision History:
c* Date wWho Reason

c* May 25, 1992 WE Original

c* - Variable/File List:

c* Name Type Description
c* 00 e e ——— e e

c* Inputs:

c* Outputs:

c* Internals:

c* - Subroutines called:

c* - Subroutines called by:

c* - Functions called:
c* - Functions called by:

CEAII XA AT IRk A A I AT AR hh bk hdh kb kbt kdhhkh bk ko kb bkt kb hhh bk bk h bk hkkhhk

As an example, a program written to create a bursty-error sequence may have a header
which appears as follows:

CRFhhhkhhhhhkhkhhhhhhhhhrhhhhhhkhhkhhArdhhhhhhh bk kb h A bk koA ko hkhkkhh ok k&

c*

c* — Program name: BstyErrS (Bursty-Error Sequence)

C'

c* - Purpose: This program generates an binary error sequence with

c* bursty errors. The error sequence denotes a correct binary channel

c* transmission with a 0 and denotes an error with a 1. The error

c* sequence is partitioned into two main, noncontiguous parts, the burst
c* error part and the thermal error part. The method used to generate

c* each part of the error sequence depends upon the density of errors to
c* be generated. For each error sequence part, if the required density of
c* errors is greater than .01, then the program uses a conditional test on
c* a uniform random number in the range [0,1]. If the density of errors is
c* less than .01, then the program will use a sample from the exponential
c* distribution to generate the next error occurrence time.

c* This program inputs parameters from an ASCII data file with default
c* name ’'BstyErrs.prm’ and outputs the error sequence to a data file

c* with default name ’'error.seq’. In addition, various statistics are

c* output to an ASCII data file with default name ’"BstyErrs.ID’, where

c* ID is a three letter identifier for the current run which 1s input from
c* file 'ID.prm’.

c* The program 18 run by editing the parameter file ’'BstyErrs.prm’ and
c* selecting the appropriate parameters and by choosing a program ID by

c* editing file "ID.prm’. Executing the program generates the ’error.seq’
c* file which contains an error sequence (in packed format) with

c* binomially distributed errors. It does not matter whether the output
c* file "error.seq’ exists or not. If it exists, it is overwritten without
c* a prompt to the user.

c* Even though Poisson distributed bursts may overlap in theory, this

c* progam does not allow error bursts to overlap. The user must take care
c* to specify input parameters so that the probability of overlapping

c* burst 1s negligible. It 1s also assumed that Peg<Peb.



Ci

c* - Revision History:

c* Date Who Reason

ci —_—

c* Aug 20, 1992 WE Original

c* Sept 14, 1992 WE Modified to use Makefile to link source

c* and updated the documentation

c* Oct 2, 1992 WE Output Number of Errors tc the error.seq

c* file header

c* Nov 4, 1992 WE Updated NextBurst function argument list

c* to include the previous burst length

c* Nov 13, 1992 WE Added write to output LoglO(Density)

c* Nov 16, 1992 WE Changed all real variables to double precision
*

o

c* - Variable/File List:

c* Inputs: None (See subroutine ReadParams)

ct

c* Outputs:

c* Name Type Description

C* _____ ———— ———— . —— ——— ——
c* error.seq file Error sequence output file

c* (in packed format)

c* Nerrs integer*4 Total Number of errors generated

c* ErrDensity real*8 Total Error density for generated seq
c* NBurstyErrs integer*4 Number of errors in the bursts

c* GenBurstDen real*s Error dsensity within the error bursts
c* GenThermDen real*s8 Error density outside the error bursts
c* NBursts integer*4 Total number of bursts generated

c* GenMeanIntv real*8 Average burst occurrence

c* TotalBLength 1integer*4 Total sum of burst lengths

c* GenBDurat:ion real*8 Average burst length (seq sym)

Ci

c* Internals:

c* ID character*3 Identifier for statistics output file
c* N integer*4 Error sequence length

c* Tbs real*8 Binary channel symbol frequency (freq.)
c* Peg real*8 Thermal error density

c* PegSeed real*8 Peg random number generator seed

c* Peb real*s Burst error density

c* PebSeed real*§ Peb random number generator seed

c* IntvFlag integer*4 = 1, Periodic error occurrence times
c* = 2, Gaussian error occurrence times
c* - = 3, Poisson error occurrence times
c* IntvMean integer*4 Burst occurrence rate (interval mean)
c* IntvSeed real*8 Interval random number generator seed
c* IntvVar inteqger*4 Burst occurrence rate variance

c* (1nterval statistic variance)

c* LngthFlag integer*4 = 1, Fixed length error bursts

c* = 2, Gaussian dist. error burst lengths
c* = 3, Exponential error burst lengths
c* LngthMean integer*4 Burst length distribution mean

c* LngthSeed real*s Length random number generator seed
c* LngthVar integer*4 Burst length distribution variance

c* 1,3 integer*4 Do loop indices

c* RecNum integer*4 Record number index (error.seq file)
c* NsegSym integer*4 Number of DBESS

c* Error(15) integer*4 Contains 15 error sequence values

c* zZero integer*4 Identically the number 0

c* BurstIntvCount integer*4 Interval Count to next error burst

c* Prevlength integer*4 Previous Burst Length

c* ErrorBurstCount integer*4 Length of next error burst (seq sym)
c* PegIntvCount integer*4 Interval Count to next Therm error

c* PebIntvCount integer*4 Interval Count to next burst error

c* DBESS integer*4 15 consecutive error sequence values
c* stored in a 2 byte integer. Stands

[ for Double Byte Error 3Sequence Symbol
c* URV real*s Uniform random variable in (0, 1]

c* NSplit (2) integer*2 A dummy array used to access each

c* double byte of the 1integer*4

c* number N.

c* NESplit (2) integer*2 A dummy array used to access each

c* double byte of the integer*4

c* number Nerrs.

C*

ct

c* - Subroutines called: ReadParams, IterBinErrGen

c* - Functions called: PackErrors, UniformRV, NextBurst, NextLength

c*

Chikhkdhhhhkkhhhhhhhhhhhhhhhhhkhktrhhhhdhhhhhkhhhborhkhh kb kA hhh bkt kb khhkk



Figure 1 shows an overall block diagram depicting the CLEAN simulation capability. The
CLEAN simulation requires the following assumptions:

1) The transmitted data is all zero

2) Synchronization has been established (i.e. only steady state error statistics are consid-
ered)

3) Demodulator performs hard decisions

At each of the points labeled A, B, C, D, and E shown in Figure 1, it is possible to perform statis-
tical analysis including (see Section III.D below):

1) Perform the Cramer Von Mises distribution test to determine if the errors are random.
2) Perform the Cramer Von Mises distribution test on blocks of the error sequence.
3) Estimate burst-error parameters

a) Average burst-error length
b) Variance of the burst-error length
c) List of the burst-error lengths
d) Average random interval length
e€) Variance of the random interval length
d) List of the random interval lengths
4) 'I_'he)error interval histogram (for random errors this should be an exponential distribu-
tion
5) Determination of the burst-error distribution *ala’ CLASS

For each program, the calculated statistics are output to the log file as described above.
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Figure 1. Overall block diagram depicting the CLEAN simulation capability.




III. PROGRAM DESCRIPTIONS

In this section, the programs which deal with the TDRSS system simulation are briefly
described.

A. Forward Error Correcting Codes

The contract requires that Reed-Solomon codes and convolutional codes be considered.
Reed-Solomon codes are a class of block codes. To this end, a program is described which
implements the effect of an (n,k,m,r) block incomplete, errors-only decoder and a separate pro-
gram to implement a Viterbi decoder which is used to decode convolutional codes.

1. BlkDecod (Block Decoder)

This program performs the effect of an incomplete, errors (erasure) only decoder. The pro-
gram operates by simply partitioning the error sequence into blocks equivalent to a received
codeword. Error statistics are calculated from each block including the number of bit errors and
the number of code symbol errors. If the incomplete decoder detects more errors than the error
correcting capability of the code, then the errors are not corrected, otherwise they are.

This program inputs parameters from an ASCII data file with default name "BlkDe-
cod.prm’ and inputs the error sequence from the file with default name ’error.seq’. The decoded
error sequence is output to the ’error.seq’ file and various statistics are output to an ASCII data
file with default name *BlkDecod.ID’, where ID is a three letter identifier for the current run
which is input from file *ID.prm’.

The program is run by editing the parameter file 'BlkDecod.prm’ and selecting the appro-
priate parameters and by choosing a program ID by editing file 'ID.prm’. Executing the program
generates the ’error.seq’ file which contains an error sequence (in packed format) with decoded
errors. The ’error.seq’ file must exist prior to the execution of this program.

There is one important assumption associated with the output of this program. It is
assumed that the undetected word error probability is negligible. This is important because this
program does not implement an actual decoding algorithm, rather the decoded error sequence is
constructed by simply counting errors. Under certain circumstances, it is possible for the errors
to occur in such a way so that the received codeword is mapped to within a sphere of ¢ (error
correcting capability of the code) about the wrong codeword. A decoding algorithm cannot
detect (all by itself) that error pattern because it thinks that only a few errors occurred which are



then corrected to the wrong codeword. The probability that this event occurs is called the unde-
tected word error probability. The algorithm implemented here cannot tell whether an error pat-
tern is undetectable by a true decoding algorithm. Therefore, this probability is assumed to be
negligible which is, in general, a valid assumption.

2. Viterbi

This program performs hard decision Viterbi decoding assuming the all zero sequence is
transmitted. The Viterbi decoding algorithm assumes that the trellis begins at the all zero state
for the first received code symbol. The end of the decoding process does not terminate with
flush bits. Instead, steady state Viterbi decoding is performed up to the end of the error sequence.

This program inputs parameters from an ASCII data file with default name ’Viterbi.prm’
and outputs the decoded error sequence to data file with default name ’error.seq’. In addition,
various statistics are output to an ASCII data file with default name ’Viterbi.ID’, where ID is a
three letter identifier for the current run which is input from file *ID.prm’.

The program is run by editing the parameter file ’Viterbi.prm’ and selecting the appropri-
ate parameters and by choosing a program ID by editing file *ID.prm’. Executing the program
generates the ’error.seq’ file which contains an error sequence (in packed format) with the
decoded error sequence. The 'error.seq’ file must exist prior to the execution of this program.
There are several assumptions associated with the implementation and output of this program.

1) Itis assumed that the all zero sequence is transmitted,

2) The path with the minimum Hamming distance at the i Trellis stage is used to find the
decoded bit for the output,

3) Itis assumed that the convolutional encoder is either rate 1/2 or rate 1/3. It is straight
forward to extrapolate this program to accommodate a rate 1/n encoder, however this
has not been done to date. It should also be possible to modify this program to accom-
modate a rate m/n encoder using the concept of a punctured convolutional code, again
however, this has not been done to date.

The Viterbi algorithm, as implemented here, updates the Trellis by iterating through each
of the states at the next stage. The Hamming distance for each path entering a given state are
computed and the survivor is kept while the other sequence is discarded. In case of a tie, a coin
is flipped (via a Uniform RV in [0,1]) to determine the survivor. The survivor is identified by
updating the MLStateTrace array. This array contains the state of the previous Trellis stage
which connects to the given state being processed. For example, suppose that we are now pro-

cessing the next stage in the Trellis, we first consider state 1 at the next stage. After investigat-



ing the Hamming distances for the two possible paths entering state 1, we find that the survivor
path came from state 3 of the previous Trellis stage. Therefore, MLStateTrace(i,1) =3 where i is
the stage index.

To prevent overwriting the Metric array, two Metric arrays are alternately processed for
each Trellis stage. This is why the algorithm performs two Trellis stage updates for each main
loop. In the first Trellis stage update, the metrics are found in array MetricA and the new metrics
are stored in MetricB. In the second Trellis stage update, the metrics are found in array MetricB
and the new metrics are stored in MetricA.

The Trellis is defined via three arrays; PathCodeSym, PathLink, and PathBit. Since this
program only accommodates rate 1/2 or 1/3 encoders, only two paths enter each state at a given
trellis stage. therefore, if there are N trellis states, then there are only 2*N possible paths between
two trellis stages. These are sequentially numbered from 1 to 2*N where path number 1 and 2
enter state 1, path 3 and 4 enter state 2, etc. Array PathLink(i) gives the state number from
which path i originates. Also, PathCodeSym(i) gives the code symbol associated with path i, and
PathBit(i) gives the bit associated with path i. Taken together, these three arrays completely
define the steady state trellis.

B. Channel Error Sequences

The contract requires that several types of channel errors be considered. A program is
described which generates Binomial (random) errors which would occur if the channel noise was
additive white Gaussian noise (AWGN). Two other programs are described which generate
burst errors and bursty errors. These allow the error bursts to have a variety of length statistics
and occurrence statistics in addition to a variety of error density statistics.

1. BinErrs (Binomial Error Sequence generation)

This program generates an binary error sequence with binomially distributed errors. The
error sequence denotes a correct binary channel transmission with a 0 and denotes an error with a
1. The method used to generate the error sequence depends upon the density of errors to be gen-
erated. If the required density of errors is greater than 0.01, then the program uses a conditional
test on a uniform random number in the range [0,1]. If the density of errors is less than 0.01,

then the program uses a sample from the exponential distribution to generate the next error
occurrence time.
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This program inputs parameters from an ASCII data file with default name ’BinErrs.prm’
and outputs the error sequence to data file with default name ’error.seq’. In addition, various
statistics are output to an ASCII data file with default name *BinErrs.ID’, where ID is a three
letter identifier for the current run which is input from file "ID.prm’.

The program is run by editing the parameter file 'BinErrs.prm’ and selecting the appropri-
ate parameters and by choosing a program ID by editing file 'ID.prm’. Executing the program
generates the ’error.seq’ file which contains an error sequence (in packed format) with bino-
mially distributed errors. It does not matter whether the output file ’error.seq’ exists or not. If it
exists, it is overwritten without a prompt to the user.

There are no assumptions associated with the implementation or output of this program.
2. BrstErrS (Burst Error Sequence generation)

This program generates a binary error sequence with burst errors. The error sequence
denotes a correct binary channel transmission with a 0 and denotes an error with a 1. The error
sequence is partitioned into two main, noncontiguous parts, the burst error part and the error free
part. The method used to generate the burst error part of the error sequence depends upon the
density of errors to be generated. If the required density of errors is greater than 0.01, then the
program uses a conditional test on a uniform random number in the range [0,1]. If the density of

errors is less than 0.01, then the program uses a sample from the exponential distribution to gen-
erate the next error occurrence time.

This program inputs parameters from an ASCII data file with default name ’'BurstErrs.prm’
and outputs the error sequence to a data file with default name ’error.seq’. In addition, various
statistics are output to an ASCII data file with default name *BurstErrs.ID’, where ID is a three
letter identifier for the current run which is input from file 'ID.prm’.

The program is run by editing the parameter file *BurstErrs.prm’ and selecting the appro-
priate parameters and by choosing a program ID by editing file "ID.prm’. Executing the program
generates the ’error.seq’ file which contains an error sequence (in packed format) with bino-
mially distributed errors. It does not matter whether the output file *error.seq’ exists or not. If it
~ exists, it is overwritten without a prompt to the user.

Even though Poisson distributed bursts may overlap in theory, this program does not allow
error bursts to overlap. The user must take care to specify input parameters so that the probabil-
ity of overlapping bursts is negligible.
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3. BstyErrs (Bursty Errors Sequence generation)

This program generates an binary error sequence with bursty errors; that is, a combination
of random and burst errors. The error sequence denotes a correct binary channel transmission
with a 0 and denotes an error with a 1. The error sequence is partitioned into two main, noncon-
tiguous parts, the burst error part and the random error part. The method used to generate each
part of the error sequence depends upon the density of errors to be generated. For each error
sequence part, if the required density of errors is greater than 0.01, then the program uses a con-
ditional test on a uniform random number in the range [0,1]. If the density of errors is less than
0.01, then the program uses a sample from the exponential distribution to generate the next error
occurrence time.

This program inputs parameters from an ASCII data file with default name "Burs-
tyErrs.prm’ and outputs the error sequence to a data file with default name ’error.seq’. In addi-
tion, various statistics are output to an ASCII data file with default name *BurstyErrs.ID’, where
ID is a three letter identifier for the current run which is input from file *ID.prm’.

The program is run by editing the parameter file 'BurstyErrs.prm’ and selecting the appro-
priate parameters and by choosing a program ID by editing file 'ID.prm’. Executing the program
generates the ’error.seq’ file which contains an error sequence (in packed format) with bino-
mially distributed errors. It does not matter whether the output file "error.seq’ exists or not. If it
exists, it is overwritten without a prompt to the user.

Even though Poisson distributed bursts may overlap in theory, this program does not allow
error bursts to overlap. The user must take care to specify input parameters so that the probabil-
ity of overlapping bursts is negligible. It is also assumed that P, < P,,.

C. Interleavers

The contract requires that block interleavers and periodic convolutional interleavers be
considered. To this end, a program is described which implements the effect of a block inter-
leaver and a separate program is described which implements the effect of a periodic convolu-
tional interleaver. Also, there are two versions of each program. The two versions implement
the same operation but trade off computer code complexity for execution speed.
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1. BlockInt (Block Deinterleaver)

This program performs block deinterleaving of the error sequence found in file ’error.seq’.
It is assumed that the channel symbols corresponding to those errors have already been inter-
leaved using an (C,R,m) block interleaver. The deinterleaver groups every m error sequence val-
ues together and deinterleaves them as a group. The method used to implement the function of
the block interleaver is to read in a block of the error sequence and to use a series of formulas to
perform the block deinterleaving. These formulas are described below.

Let by denote the error sequence input to the deinterleaver and let d, denote the error
sequence output by the deinterleaver. Note: the subscripts are assumed to be incremented start-
ing with zero. Then by is read into the deinterleaver memory array (by columns) at location:

Symbol index = int(K/m) ==
Row of by = Mod(Y,R) ==

Column of by = int(Y/R) == j
Depth of by = Mod(K,m) ==p

Given i, j, and p the deinterleaved value location (read out by rows) is found to be
L=m*({*C+))+p

The implementation found below actually calculates K given L. The actual value b, is
found in a buffer which is loaded with error sequence values. The calculation is as follows:

1) L points to location BuffL in the buffer, BuffL = Mod(L,BuffLength)
2) The interleaved location for BuffL is BuffK where

Il = Mod(BuffL,m)

X =BuffL/m

BuffK =m * (R*Mod(X,C) + intd(X/C)) + I
where BuffLength=R*C*m. Note that there is a problem deinterleaving the end of the ’error.seq’
file due to a possible partial interleaver block at the end of the sequence. The program attempts
to partially deinterleave this last partial block. An error sequence could be zero padded to fill a
partial block, thereby changing slightly the overall error statistics.

This program inputs parameters from an ASCII data file with default name *BlockInt.prm’
and outputs the error sequence to data file with default name ’error.seq’. In addition, various
statistics are output to an ASCII data file with default name *BlockInt.ID’, where ID is a three
letter identifier for the current run which is input from file *ID.prm’.
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The program is run by editing the parameter file 'BlockInt.prm’ and selecting the appropri-
ate parameters and by choosing a program ID by editing file 'ID.prm’. Executing the program
generates the ’error.seq’ file which contains an error sequence (in packed format) with deinter-
leaved errors. The ’error.seq’ file must exist prior to the execution of this program.

There are no assumptions associated with the implementation or output of this program.
2. BIkArr (Alternate Block Deinterleaver)

This program performs block deinterleaving of the error sequence found in file ’error.seq’.
It is assumed that the channel symbols corresponding to those errors have already been inter-
leaved using an (C,R,m) block interleaver. The deinterleaver groups every m error sequence val-
ues together and deinterleaves them as a group. The method used to implement the function of
the block interleaver is to read in a block of the error sequence into a buffer which mimics the
block interleaver memory array. The error sequence is read in by rows and deinterleaving is per-
formed by reading the error sequence out by columns.

This program inputs parameters from an ASCII data file with default name ’BlockInt.prm’
and outputs the error sequence to data file with default name ’error.seq’. In addition, various
statistics are output to an ASCII data file with default name *BlockInt.ID’, where ID is a three
letter identifier for the current run which is input from file 'ID.prm’.

The program is run by editing the parameter file *BlockInt.prm’ and selecting the appropri-
ate parameters and by choosing a program ID by editing file 'ID.prm’. Executing the program
generates the ’error.seq’ file which contains an error sequence (in packed format) with deinter-
leaved errors. The ’error.seq’ file must exist prior to the execution of this program.

There are no assumptions associated with the implementation or output of this program.
3. DPCI (Periodic Convolutional Deinterleaver)

This program performs deinterleaving of the error sequence found in file ’error.seq’. It is
assumed that the channel symbols corresponding to those errors have already been interleaved
using an (Ntaps,M) periodic convolution interleaver. The method used to implement the function
of the periodic convolutional interleaver is a series of formulas as described below. These func-
tions are applied to a portion of the error.seq array which is stored in a ring buffer.

Let by denote the error sequence input to the DPCI and let d, denote the error sequence
output by the DPCI. Then the index L relates to the index K as follows,
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K =Mod((L-1),Ntaps) * M * Ntaps + L

Note that there is a problem deinterleaving the end of the ’error.seq’ file due to the sequen-
tial nature of the algorithm. The DPCI error sequence file is truncated to eliminate the "don’t
cares”. '

This program inputs parameters from an ASCII data file with default name 'DPCIL.prm’
and outputs the error sequence to data file with default name ’error.seq’. In addition, various
statistics are output to an ASCII data file with default name 'DPCIID’, where ID is a three letter
identifier for the current run which is input from file 'ID.prm’.

The program is run by editing the parameter file ’DPCIL.prm’ and selecting the appropriate
parameters and by choosing a program ID by editing file "ID.prm’. Executing the program gen-
erates the ’error.seq’ file which contains an error sequence (in packed format) with deinterleaved
errors. The "error.seq’ file must exist prior to the execution of this program.

There are no assumptions associated with the implementation or output of this program.
4. DPCIAIt (Alternate Periodic Convolutional Deinterleaver)

This program performs deinterleaving of the error sequence found in file ’error.seq’. It is
assumed that the channel symbols corresponding to those errors have already been interleaved
using an (n,M) periodic convolution interleaver. The method used to implement the function of
the periodic convolutional interleaver is a series of formulas as described below.

Let b, denote the error sequence input to the DPCI and let d; denote the error sequence out-
put by the DPCI. Then the index j relates to the index i as follows,

Jj=i-[(i-1) mod n]*M*n

Note that there is a problem deinterleaving the end of the ’error.seq’ file due to the sequen-
tial nature of the algorithm. For this case, the ’error.seq’ file is filled with zeroes for those dein-
terleaved positions which result from locations which are beyond the end of the ’error.seq’ file.

This program inputs parameters from an ASCII data file with default name "DPCIL.prm’
and outputs the error sequence to data file with default name ’error.seq’. In addition, various
statistics are output to an ASCII data file with default name *"DPCL.ID’, where ID is a three letter
identifier for the current run which is input from file *ID.prm’.
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The program is run by editing the parameter file 'DPCI.prm’ and selecting the appropriate
parameters and by choosing a program ID by editing file 'ID.prm’. Executing the program gen-
erates the ’error.seq’ file which contains an error sequence (in packed format) with deinterleaved
errors. The ’error.seq’ file must exist prior to the execution of this program.

There are no assumptions associated with the implementation or output of this program.
D. Error Sequence Analysis

The contract requires that error sequence be characterized. This amounts to modeling the
errors by a predefined mathematical model. Several mathematical models are considered; one
which models the errors as bursty errors, and one which models the errors as burst errors. Bursty
errors are characterized by errors which occur within bursts as well as errors which occur outside
bursts. Burst errors are characterized by errors which occur only within bursts. In addition, two
programs have been written to implement distribution tests for the purpose of determining if an
error sequence, or a segment of an error sequence, resulted from random errors.

1. CVMseq (Cramer Von-Mises sequence distribution test)

This program uses the Cramer Von-Mises (CVM) distribution test to determine whether
the error sequence (in default file ’error.seq’) is binomially distributed with confidence level
alpha. The method implemented is simple. The error sequence is read in by blocks and the over-
all CVM test statistic is calculated. At the end of the program, the test statistic for the complete
sequence along with a preselected set of critical values is output to the user. The results are also

output to ’'CVMseq.ID’ file where ID is a three letter identifier for the current run which is input
from file "ID.prm’.

Executing the program causes the ’error.seq’ file to be read which contains an error
sequence (in packed format). The ’error.seq’ file must exist prior to the execution of this pro-
gram. There are no assumptions associated with the implementation or output of this program.

2. CYMbIk (Cramer Von-Mises distribution test on error sequence blocks)
This program uses the Cramer Von-Mises (CVM) distribution test to determine whether

the error sequence (in default file ’error.seq’) is binomially distributed with confidence level
alpha. The error sequence is read in by blocks and the CVM test statistic is calculated for each



16

block. At the end of the program, the test statistics for each block along with a preselected set of
critical values are ordered and output to the user. The results are also output to *CVMblk.ID’ file
where ID is a three letter identifier for the current run which is input from file *ID.prm’.

Executing the program causes the ’error.seq’ file to be read which contains an error
sequence (in packed format). The ’error.seq’ file must exist prior to the execution of this pro-
gram. There are no assumptions associated with the implementation or output of this program.

3. DeltaEst (Bursty-error parameter estimation via the A method)

This program estimates parameters associated with a bursty error sequence. The method
employed segments the error sequence into random error regions and burst error regions. The
algorithm implemented operates on the error sequence iteratively. For each iteration, the algo-
rithm is either tracking a burst segment or a random segment. At each iteration, the error
sequence interval to the next error is found. If the algorithm is tracking a random segment, then
an attempt is made to begin a burst by comparing the error density for the i" interval (surrounded
by 2 errors which gives an effective error density of 2/[interval+2]) with a threshold (Delta). If
the error density for the i interval is greater than Delta, then the algorithm begins tracking a
burst segment, if not then the random segment is continued. If the algorithm is tracking a burst
segment, then the segment is continued until the error density within the total burst segment falls
below the threshold, Delta. In this way, the entire sequence is partitioned. Initializing the pro-

cesses is particularly troublesome because of the various combinations for the beginning of the
error seq.

This program inputs parameters from an ASCII data file with default name ’DeltaEst.prm’
and outputs the error sequence to data file with default name ’error.seq’. In addition, various
statistics are output to an ASCII data file with default name *DeltaEst.ID’, where ID is a three
letter identifier for the current run which is input from file *ID.prm’.

The program is run by editing the parameter file *DeltaEst.prm’ and selecting the appropri-
ate parameters and by choosing a program ID by editing file *ID.prm’. Executing the program
generates the “error.seq’ file which contains an error sequence (in packed format) with deinter-
leaved errors. The ’error.seq’ file must exist prior to the execution of this program.

There are no assumptions associated with the implementation or output of this program.
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4. IntvHst (Error Interval Histogram)

This program calculates the error interval probability density function for an error
sequence. The error sequence is partitioned into error free segments and a histogram of the inter-
val length calculated. Note that the two error free intervals occurring at the beginning of the
error sequence and at the end are ignored. Only intervals between errors are counted.

The program outputs the histogram to file *Interval hst’ which (for now) is an ASCII file
with each histogram value stored per record. For each record, the interval index appears first fol-
lowed by the probability of occurrence.

Note that there are NO parameters to be read in for this program. However, various statis-
tics are output to an ASCII data file with default name *IntvHst.ID’, where ID is a three letter
identifier for the current run which is input from file 'ID.prm’.

The program is run by editing the parameter file *IntvHst.prm’ and selecting the appropri-
ate parameters and by choosing a program ID by editing file 'ID.prm’. Executing the program
generates the "Interval.hst’ file which contains the histogram of the error intervals found in the
error sequence. The 'error.seq’ file must exist prior to the execution of this program.

There are no assumptions associated with the implementation or output of this program.
5. GAPEst (fixed GAP burst error distribution Estimation)

This program estimates parameters associated with a bursty error sequence. The method
employed segments the error sequence into error free regions and burst error regions. A burst
error region is defined to be a region which contains errors no two of which are separated by
more than the prespecified GAP number of error free symbols. In addition, the burst error region
is preceded and followed by error free regions of minimum width specified by GAP. The algo-
rithm implemented operates on the error sequence iteratively. For each iteration, the algorithm
determines the width of the next error free interval, if it is less than GAP then the next error is
included in the current burst, if it is greater than GAP then the previous burst is terminated and
the next burst is started. In this way, the entire sequence is partitioned. If the first error sequence
value is a ’0’ then the process always begins with an error free region. If the first error sequence
value is a 1’ then the process always begins with an error burst.
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This program inputs parameters from an ASCII data file with default name *GAPEst.prm’
and outputs the error sequence to data file with default name ’error.seq’. In addition, various
statistics are output to an ASCII data file with default name *'GAPEst.ID’, where ID is a three
letter identifier for the current run which is input from file "ID.prm’.

The program is run by editing the parameter file 'GAPEst.prm’ and selecting the appropri-
ate parameters and by choosing a program ID by editing file 'ID.prm’. Executing the program
causes the ’error.seq’ file to be read which contains an error sequence (in packed format). The
‘error.seq’ file must exist prior to the execution of this program.

There are no assumptions associated with the implementation or output of this program.
E. Utilities

Several utilities have been developed to support CLEAN. The makefile given in the fol-
lowing section can be used to compile the source code with a single command by typing 'make

all’. The programs which follow allow the user to compare error sequences, set erTor sequences,
and display error sequences.

1. Make Utility for Lahey Fortran v5.0

FFLAGS = /3 /B /nAl /Cl1 /P /R /Z1

CorrCHW = CorrCW.obj Unpack.obj Pack.ob3
GaussRV = GaussRV.obj UnifRV.obj

IterBin = IterBin.obj UnifRV.obj

LdBuffl = LdBuffl.obj Unpack.obj

LdBuff4 = LdBuffd.obj Unpack.obj

NextBrst = NextBrst.obj UnifRV.obj GaussRV.obj
NextInt = NextInt.obj LdBuffd.obj

NextLnth = NextLnth.obj UnifRV.obj GaussRV.obj
SvBuffl = SvBuffl.obj Unpack.obj Pack.obj
SvBuff4 = SvBuffd.obj Unpack.obj Pack.obj
TotalPe = TotalPe.obj Unpack.obj

ALL : BinErrs BlkArr BlkDecod Blockint BrstErrs \
BstyErrs CompSeq CVMblk CVMseq DeltaEst DisplFil DisplSeq \
DPCI DPCIOld GAPest IntvHst SetErrs

BINERRS : BINERRS.ob3j §(IterBin) Pack.obj UnifRV.ob3
Optlink BINERRS.obj §(IterBin) Pack.obj UnifRV.cbij, \
BINERRS.exe,,c:\compiler\lahey\F77L.LIB

BLKARR : BLKARR.obj $(LdBuffl) $(SvBuffl) DispBufl.obj
COptlink BLKARR.obj $(LdBuffl) $(SvBuffl) DispBufl.obj, °
BLKARR.exe,,c:\compiler\lahey\F77L.LIB

BLKDECOD : BLKDECOD.ob3j $(LdBuffd4) $(CorrCw)
Cptlink BLKDECOD.obj $(LdBuffd) 3${(CorrCW), \
BLKDECOD.exe, ,c:\compiler\lahey\F77L.LI3

BLOCKINT : BLOCKINT.ob3j $(LdBuffl) $(SvBuffl) Pack.obj
Optlink BLOCKINT.obj $§(LdBuffl) $(SvBuffl) Pack.obj, \
BLOCKINT.exe,,c:\compiler\lahey\F77L,LI3

BRSTERRS : BRSTERRS.obj $(IterBin) Pack.obj UnifRV.obj $(NextBrst)} §(NextLnth)
Optlink BRSTERRS.obj $(IterBin) Pack.obj UnifRV.obj $(NextBrst) S (NextLnth) , \
BRSTERRS.exe,,c:\compiler\lahey\F77L.L13

BSTYERRS : BSTYERRS.obj $(IterBin) Pack.obj UnifRV.obj §(NextBrst) S (NextLnth)
Optlink BSTYERRS.obj $(IterBin) Pack.obj UnifRV.obj $(NextBrst) § (NextLnth) , \
BSTYERRS.exe,,c:\compiler\lahey\F77L.LIB



COMPSEQ: COMPSEQ.obj Unpack.obj

optlink

CVMblk

COMPSEQ.obj Unpack.obj, \

CCOMPSEQ.exe,,c:\compiler\lahey\F77L.LIB
CVMblk.obj $(LdBuff4) RdStats.obj

Optlink CVMblk.obj $(LdBuff4) RdStats.obj,

CVMblk.exe,,c:\compiler\lahey\F77L.LIB

CVMseq: CVMseqg.obj $(LdBuff4) §(NextInt) RdStats.obj
Optlink CVMseq.obj $(LdBuff4) §(NextInt) RdStats.obij, \
CVMseq.exe,,c:\compiler\lahey\F77L.LIB
DELTAEST DELTAEST.obj $(LDBuffd4) $(NextInt) $(TotalPe)
Optlink DELTAEST.obj $(LDBuff4) $(NextInt) & (TotalPe)
DELTAEST.exe, ,c:\compiler\lahey\F77L.LIB
DISPLFIL DISPLFIL.obj Unpack.obj
Optlink DISPLFIL.obj Unpack.obj, \
DISPLFIL.exe,,c:\compiler\lahey\F77L.LIB
DISPLSEQ: DISPLSEQ.obj Unpack.obj
Optlink DISPLSEQ.obj Unpack.obj, \
DISPLSEQ.exe,,c:\compiler\lahey\F77L.LIB
DPCI : DPCI.obj Unpack.obj Pack.obj
Optlink DPCI.obj Unpack.obj Pack.obi,
DPCI.exe,,c:\compiler\lahey\F77L.LIB
DPCIOLD DPCIOLD.obj Unpack.cbj Pack.obj

Optlink DPCIQLD.obj Unpack.obj Pack.obi,
DPCIOLD.exe,, c:\compiler\lahey\F77L.LIB

: GAPEST.obj $5(LdBuffd) §(NextlInt)
Optlink GAPEST.obj $(LdBuffd)
GAPEST.exe, ,c:\compiler\lahey\F77L.LIB

IntvHst.obj $(LDBuff4)
Optlink IntvHst.obj $(LDBuff4)

IntvHst.exe,,c:\compiler\lahey\F77L.LIB
SETERRS.obj Pack.obj
Optlink SETERRS.obj Pack.obj,
SETERRS.exe,, c:\compiler\lahey\F77L.LIB

GAPEST

IntvHst

SETERRS

BINERRS.obj : BINERRS. for
F77L BINERRS.for $(FFLAGS)
BLKARR.obj : BLKARR. for

F77L BLKARR.for S$(FFLAGS)

BLKDECOD.ob3 BLKDECOD. for
F77L BLKDECOD. for $(FFLAGS)

BLOCKINT.obj BLOCKINT. for
F77L BLOCKINT.for $(FFLAGS)

BRSTERRS.ob3 BRSTERRS. for
F77L BRSTERRS.for $(FFLAGS3)

BSTYERRS.obj BSTYERRS. for
F77L BSTYERRS.for §$(FFLAGS)

COMPSEQ.0ob) COMPSEQ. for
F77L COMPSEQ.for $(FFLAGS)

CVMblk.obj CVMblk. for
F77L CVMblk.for $(FFLAGS)

CVMseq.obj CVMseq. for
F77L CVMseq.for $(FFLAGS)

CorrCW.obj CorrCW. for
F77L CorrCW.for §$(FFLAGS)

DELTAEST.ob3 DELTAEST. for
F77L DELTAEST.for §$(FFLAGS)

DispBufl.obj : DispBufl. for
F77L DispBufl.for §(FFLAGS)

DispBuf4.obj DispBuf4. for
F77L DispBufd.for $(FFLAGS)

DISPLFIL.ob3 DISPLFIL. for
F77L DISPLFIL.for §(FFLAGS)

DISPLSEQ.ob] DISPLSEQ. for
F77L DISPLSEQ.for $(FFLAGS)

DPCI.cb3 CPCI.for
F77L DPCI.for §(FFLAGS)

DPCIOLD.ob3 DPCIOLD. for
F77L DPCIOLD. for $(FFLAGS)

\

S (NextInt)

\

$ (NextInt)
$ (NextInt)

’

\



GAPEST.ob3j : GAPEST. for
F77L GAPEST. for $(FFLAGS)

GAUSSRV.obj : GAUSSRV. for
F77L GAUSSRV.for S$(FFLAGS)

IntvHst.obj : IntvHst.for
F77L IntvEst.for §$(FFLAGS)

ITERBIN.obj : ITERBIN. for
F77L ITERBIN.for $(FFLAGS)

LDBUFFl.obj : LDBUFF1.for
F77L LDBUFFLl.for §(FFLAGS)

LDBUFF4.0bj : LDBUFF4.for
F77L LDBUFF4.for $(FFLAGS)

NEXTBRST.obj : NEXTBRST. for
F77L NEXTBRST.for $(FFLAGS)

NEXTINT.obj : NEXTINT. for
F77L NEXTINT.for $(FFLAGS)

NEXTLNTH.obj : NEXTLNTH. for
F77L NEXTLNTH.for $(FFLAGS)

PACK.obj : PACK. for
F77L PACK.for $(FFLAGS)

RdStats.obj : RdStats.for
F77L RdStats.for $(FFLAGS)

SETERRS.ob3j : SETERRS. for
F77L SETERRS.for §$(FFLAGS)

SVBUFFl.obj : SVBUFF1L.for
F77L SVBUFF1.for $(FFLAGS)

SVBUFF4.0bj : SVBUFFA4. for
F77L SVBUFF4.for $(FFLAGS)

TotalPe.obj : TotalPe.for
F77L TotalPe.for $(FFLAGS)

UNIFRV.obj : UNIFRV.for
F77L UNIFRV.for §$(FFLAGS)

UNPACK.ob3j : UNPACK. for
F77L UNPACK.for §$(FFLAGS)

2. CompSeq (Compare Sequence)

20

This program compares two error sequences and identifies those error locations where the
two are different. The user is prompted for the two error sequence filenames. It is assumed that

the errors stored in error.seq are in the DBESS (Double Byte Error Sequence Symbol) packed

format.

3. SetErrS (Set Error Pattern)

This program interactively allows the user to input an error sequence. All parameters and

the error sequence are input directly from the user so that there is no parameter file associated
with this program. The errors are stored in the DBESS packed format.

There are no assumptions associated with the implementation or output of this program.



4. DisplSeq (Display Default Error Sequence)

This program displays the error sequence found in file ’error.seq’. It is assumed that the
errors stored in error.seq are in the DBESS packed format.

5. DisplFil (Display Error Sequence from user File)

This program displays the error sequence found in a file specified by the user. Itis
assumed that the errors stored in the file are in the DBESS packed format.

21
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IV. NASA GSFC/MSU INTERRELATED CAPABILITIES

To enhance the research efforts at both MSU and NASA GSFC, several interrelated capa-
bilities have been established. The first author visited GSFC in August of 1992 to learn how to
use the Communications Link And System Simulation (CLASS) software tool. CLASS per-
forms a signal level simulation of the TDRS downlink and predicts coded system performance
using theoretical analysis. In addition, the first author learned how to use the OMV bit-by-bit
simulator which uses the same signal level simulation nucleus as CLASS but also incorporates
actual deinterleaving and decoding algorithms to simulate the operation of the deinterleavers and
decoders at White Sands. After learning how to use these software tools, analyst level access
was granted and has been established. It is now possible for MSU personnel to exercise CLASS
and the OMYV bit-by-bit simulator remotely from MSU via internet. MSU appreciates the sup-
port given by the NASA/GSFC CLASS group.

Furthermore, real EOS Ku-band downlink data (validity of the data pending) has been
acquired by Victor Sank at GSFC. A program was written to convert from the GSFC error
sequence data format into the format required by CLEAN. Since these data files are sometimes
rather large which requires large storage spaces, a second program was written to archive the
GSFC data using run length encoding, a lossless compression scheme. For an error sequence
with an error probability of 10, this provides about 3:1 lossless compression. For an error
sequence with an error probability of 10, this provides about 30:1 lossless compression. In
addition, a third program was written to unarchive the run length encoded data into the DBESS
format required by CLEAN. Mr. Sank’s help has been invaluable to this project.

A. EOS Real Error Sequence Data conversion program

This program inputs the real EOS downlink data obtained from Victor Sank and converts it
into the DBESS packed format required by the programs in CLEAN.

It is assumed that the input file accessed by this program exists prior to its execution.

B. Error Sequence Archiver using Run Length Encoding

This program inputs the real EOS downlink data obtained from Victor Sank and converts it
into an archival format. The archival format only stores the location of each error in the file.
This is not the format which is necessary for CLEAN. Another program called SeqUnarc can be
executed to convert from the Archival format to the DBESS format required by CLEAN.
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It is assumed that the input file accessed by this program exists prior to its execution.
C. Error Sequence Unarchiver

This program inputs data in the archival format (run length encoding) via the SeqArc pro-
gram and unarchives it to the DBESS format required by CLEAN.

It is assumed that the input file accessed by this program exists prior to its execution.
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V. PREVIEW OF EXPECTED RESULTS

The problem of interest is that of choosing/evaluating a good forward error correcting cod-
ing (FEC) scheme for the Ku-band TDRS downlink which will be used for the Earth Observation
System (EOS). There are many issues to be considered when choosing a "good" FEC including
required error probability, required data rate, and data loss during synchronization cycles just to
name a few.

For example, suppose it is proposed to use a (255,223) Reed-Solomon (RS) code with a
block interleaver for the 150Mbps Ku-band TDRS downlink. If this code meets the required
error probability, say 10, for the types and density of errors anticipated on the link and if it can
accommodate the required data rate, 150Mbpsx(223/255)=131Mbps, then this code can be con-
sidered acceptable. If the decision is made to concatenate a rate 1/2 convolutional encoder and
periodic convolutional interleaver with the RS code and block interleaver, then several undesir-
able side effects will take place. First, the hardware complexity will increase which will increase
cost, size, weight, power, etc. Second, the periodic convolutional deinterleaver and Viterbi
decoder at the receiver must synchronize to the received data. The synchronization process can
result in significant data loss. In addition, the convolutional code rate results in a decrease in the
system data rate to 131Mbpsx(1/2)=65.6Mbps, assuming a fixed channel rate. Although this
concatenated scheme may provide a lower error probability which exceeds the requirement, it is
achieved at a significant cost. Therefore, the studies developed for this contract focus on deter-
mining and evaluating the minimum complexity coding scheme for EOS to satisfy the system
requirements. This requires an understanding of the nature of the Ku-band downlink errors and
of the achievable performance for various coding schemes in various types of error environ-
ments.

To this end, the research is being focussed along two main lines as discussed in the follow-
ing sections.

A. Research Focus 1

First, the nature of the downlink errors is being investigated. The expected results are a
consequence of discussions with NASA/GSFC and STEL personnel concerning the nature of the
Ku-band downlink errors. The expected results are:

1) Determine that the expected errors which occur in a received block of data are not ran-
dom. This is accomplished by applying the Cramer Von-Mises distribution test (see
CVMblk in Section III.D.2) to the actual data.
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2) Estimate the error parameters for the actual channel data assuming that the errors are
bursty in nature. These will be estimated by applying the bursty-error parameter esti-
mation via the A method (see DeltaEst in Section ITII.D.3) to the actual data. Itis
expected that the burst locations follow a Poisson distribution. The estimated parame-
ters are:

a) Average rate of burst occurrence and the burst occurrence interval probability
density function (pdf). It is expected that this pdf is exponential which means
that the burst locations follow a Poisson distribution.

b) The average burst length (in channel symbols) and the burst length pdf. It is
expected the variance of this pdfis small.

c) The average error density during the bursts and the burst error density pdf. It is
expected that the variance of this pdf is small.

d) The average error density outside the bursts. It is expected that this error density
will be very nearly the random error rate.

Because the actual data has not been received to date, this work has not been completed.

B. Research Focus 2

The second focus of this research is the investigation of performance for various coding
schemes in a bursty-error environment. The expected result will be plots similar to the one
shown in Figure 2. Several coding schemes will be considered including;

1) Reed-Solomon (RS)

2) RS, block interleaver (interleave depth of 5)

3) RS, block interleaver (interleave depth of 8)

4) RS outer code, block interleaver (interleave depth of 5), convolutional inner code

5) RS outer code, block interleaver (interleave depth of 5), convolutional inner code, peri-
odic convolutional interleaver.

The curves drawn are for illustration only but do indicate to some degree the expected shape.
The error ratio R, , as defined in this research, is

_ Total Random Errors
¢~ Total Errors



v e

Coded Error Probability (Log10)

Channel Error Probability, 0.001

Figure 2. An expected output performance data product (for illustration only).
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To construct Figure 2, a channel error probability, P(g,,), is chosen. For each possible error rate,

the bursty-error parameters are calculated and CLEAN is used to calculate the decoded error
probability. For example, to simulate system (5) identified above, the following programs are
sequentially executed:

1) BstyErrs (see Section ITI1.B.3)
2) DPCI (see Section II1.C.3)

3) Viterbi (see Section II1.A.2)

4) BlockInt (see Section III.C.1)
5) BlkDecod (see Section IT.A.1)

The input parameters must be chosen and input to the appropriate parameter files. The choice
for the input parameters are discussed in the following section. The file *BlkDecod.ID’ where
ID is the 3 letter identifier found in file *ID.prm’ gives the final decoded error probability. Note
that CLEAN performs a Monte Carlo simulation.

It is expected that the actual plot, similar to that shown in Figure 2, will show that the
Reed-Solomon code used with a block interleaver (interleave depth of 5) is sufficient to provide
the required decoded error probability and, therefore, constitutes the "best" coding scheme.

To date, about 10% of the actual plot has been developed for the choice of parameters dis-

cussed in the following section. The required execution time of some of the programs is on the
r f int for a SP i

C. Choosing System Parameters

Of interest in this research are performance results for codes which are used for space
based communication systems. The Consultative Committee for Space Data Systems (CCSDS)
[1] defines a concatenated coding scheme for space based communication systems consisting of
a (255,223) RS outer code followed by an interleaver and a rate 1/2 constraint length 7 convolu-
tional inner code. Therefore, these are the code parameters chosen for study in this research. To
summarize

1) Reed-Solomon code (BlkDecod program)

a) Blocklength, n=255

b) Information codeword length, k=223

¢) Number of binary symbols per codeword, m=8

¢) Error correcting capability, =16 code symbols per codeword
2) Convolutional code (Viterbi program)
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a) Constraint length, K=7

b) Number of code generators, 2 (code rate = 1/2)

c) Tap weights for code generator #1, 1011011

d) Tap weights for code generator #2, 1111001

e) Number of constraint lengths for decoder memory, 4

Also of interest are the interleaver parameters. The Framing and Multiplex Equipment
(FAME) defines a standard architecture for space based communication systems which involves
multiplexing 8 (only 5 are utilized) data streams together to form a single data stream for trans-
mission to earth. This results in a block interleaving effect for the demultiplexed data input to
the RS decoder. Therefore, the block interleaver imitates the multiplex operation. For the
(255,223) RS code defined above, this requires the block interleaver parameters to be chosen as

3) Block interleaver (BlocklInt)
a) Number of rows, 5 (This is alternately chosen to be 8)
b) Number of columns, 255
c) Number of binary symbols per memory array element, 8

In addition, the periodic convolutional interleaver currently used has parameters given by

4) Periodic Convolutional Interleaver (DPCI)
a) Number of taps, 30
b) Number of delays for the 2™ tap, 2

The only parameters remaining to be specified are the bursty-error parameters. This
requires choosing the burst duration pdf be chosen along with the mean and possibly the vari-
ance, the burst location pdf be chosen along with the mean and possibly the variance, the error
density within the bursts, and the error density outside the bursts. These parameters must be cho-
sen for the given raw channel error probability, P(g,,), and for each possible value for the error
ratio.

It is known that the Ku-band downlink is characterized by essentially error free transmis-
sion interrupted by short, fixed periods of high interference. The interference is probably less
than 0.3pisec in duration. Although the average time between error bursts is unknown, the duty
cycle of the interference is probably less than 0.025. Given this information, a worse case sce-
nario can be constructed. If the worse case interference duration is 0.3lsec and the channel sym-
bol rate is 75Mbps (2 binary symbols per channel symbol for QPSK gives rise to the required
150Mbps), then (0.3x10°°)(75x10°bps)(2bits/channel symbol)=45 binary symbols is the length of
each error burst. As an aside, it is easy to determine that a (255,223) RS code with a depth 5
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block interleaver can correct an error burst of 45 binary symbols. However, it is possible for
multiple error bursts to occur within one interleaved block. In light of this characterization,
some of the bursty-error parameters are chosen as follows

5) Bursty-error Generation (BstyErrS)

a) Burst occurrence location pdf, IntvFlag=3 (Poisson)

b) Burst occurrence interval mean, IntvMean=4500 binary symbols

¢) Burst occurrence duration pdf, LngthFlag=1 (Fixed)

d) Burst occurrence duration mean, LngthMean=45 binary symbols
The only two parameters remaining to be chosen are the error probability during the error bursts,
P, and the error probability outside the error bursts, P,,. Choosing these is more involved than
the previous parameters because they must be calculated for the predefined raw channel error
probability, P (e,), and because they must be changed to adjust the error ratio.

The method for calculating P, and P,, in terms of P(g,,) and R, is as follows. From [2],
the raw channel error probability for a bursty-error channel is given by

P(e,) =P, (1-dIM,) +P (dIM,)

where M, is the average interval between error bursts (denoted IntvMean in part 4.b above) and
where d is the burst duration (denoted LngthMean in part 4.d above). The error ratio can be
expressed in terms of these symbols to be

_P(1-dIM,)
© P(ech)

Solving the previous two equations for P,, and P,, gives

_RP(es)
" 1—dIM,

and
M,
P,= 7 (1-R)P(e,)

These are valid provided P,, 2 P,,. Note that for given values of d and M,, it is generally not

possible for the error ratio to take on all values from O to 1. Clearly, P, <P, <1/2, from which
it can be determined that
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P(s.) - dI(2M,
0 D) dIOM) b i <1
P(Ech)

which implies that we must have

d
P(e,) 2 M,

Note that if we choose P(g,,) = d/(2M,) then it is possible to achieve a range for the error ratio of

0 <R, <1 by selecting appropriate values for P,, and P,,.



31

BIBLIOGRAPHY
Consultative Committee for Space Data System, "Recommendations for space data sys-
tem standards: Telemetry channel coding." Blue Book, May 1984.

Ebel, W.J, Si -
ment, Ph. D. D1ssertat10n Umver81ty of Mssoun Rolla, 1991




APPENDIX IT

An Investigation of Error Characteristics
and Coding Performance

NASA GRANT NAGS5-2006

Annual Report

January 1993 - August 1993



An Investigation of
Error Characteristics and Coding Performance

NASA GRANT NAGS5-2006
Tuly 1, 1992 - June 30, 1993

Quarterly Report
January 1, 1993 - March 30, 1993

Submitted to:

Mr. Warner Miller
Code 728.4
Instrument Electronic Systems Branch
Engineering Directorate
NASA/Goddard Space Flight Center
Greenbelt, MD 20771
301-286-8183

Submitted by:

William J. Ebel, Ph.D.
Frank M. Ingels, Ph.D.
Mississippi State University
Drawer EE
Mississippi State, MS 39762
601-325-3912

March 1993



Department of Electrical and Computer Engineering
PO. Drawer EE

Mississippi State. MS 39762-5660

Tel: (601) 325-3912  FAX: (601) 325-2298

April 8, 1993

Mr. Warner Miller

MS Code 728

NASA Goddard Space Flight Center
Greenbelt, MD 20771

Dear Warner:

Enclosed you will find three copies of the quarterly report for the period January 1, 1993 to
March 30, 1993 for NASA Grant NAG5-2006.

In my last letter that we FAXed to you dated March 12, we mentioned that we saw an anomaly in
the data we received from GSFC (Victor Sank). It turns out that the anomaly was simply a bug
in the Lehay FORTRAN compiler that we are using which caused a format conversion error.
However, the format conversion error only caused a very small fraction of Spurious errors to be
imbedded in the error sequence. In fact, the fraction of spurious errors was so small that it did
not have a significant influence on the computed statistics. Although the data used for this report

is for the slightly modified data, the conclusions drawn are true to the actual data generated by
GSFC.

After identifying the bug and fixing the problem, no data inversions or other anomalies in the
data were found. All results for the final report will be based upon the correct error sequence
data.

We look forward to your comments.
Sincerely yours,

RISl

Will Ebel
Assistant Professor

Frandeity gol—

Frank Ingels
Professor
Electrical and Computer Engineering



o Misisippt State

Department of Electrical and Computer Engineering
PO. Drawer EE ’

Mississippi State, MS 39762-5660

Tel: (601) 325-3912 FAX: (601) 325-2298

April 8, 1993

NASA Science & Technology Information Facility
ATTN: Accessioning Department

800 Elkridge Landing Road

Linthicum Heights, MD 21090

TO WHOM IT MAY CONCERN:

Enclosed are two (2) copies of the quarterly report for the NASA Grant NAG5-2006.
Sincerely,

Will Ebel
Assistant Professor

Dt D

Frank Ingels
Professor
Electrical and Computer Engineering



Abstract

In February of 1993, real error sequence data from the Ku-band downlink was obtained
from NASA/GSFC. The data consists of the error sequence found at the NRZM decoder output.

Along with theoretical results, some processing of this data has been completed and is reported
in this document.

In this report, performance evaluation of various coding schemes operating on bursty
errors is described along with results on studies relating to the acquired Ku-band downlink data.
It is shown that the errors resulting from the Ku-band downlink through TDRS are characterized
by random errors at the demodulator output which give rise to random occurrences of error pairs
at the NRZM decoder output. This conclusion is drawn by (1) comparing the empirical error
interval distribution from the real EOS data to the theoretical error interval distribution assuming
random occurrences of error pairs at the NRZM decoder output, and (2) performing the CVM
distribution test on a subset of the real data.

In addition to this, results of a study investigating the performance of the (255,223) Reed-
Solomon (RS) code on bursty errors is presented. It is shown that the (255,223) RS code with a
depth 5 block interleaver is efficient at correcting bursty errors if the burst durations are less than
about 75 binary symbols for a burst duration/rate constant vd > 0.01. Furthermore, comparison
of various coding schemes operating on random occurrences of error pairs shows that the
(255,223) RS code can achieve the required 10° decoded error probability with an error proba-

bility at the demodulator output of 10* using errors-only decoding and 10" using erasure
decoding.

A brief study dealing with synchronization for the CCSDS transfer frame format which
includes a 32 bit PN sequence header shows that achieving synchronization will not be a prob-
lem as long as the raw channel error probability is less than about 0.1. Finally, a section is
included which gives a brief description of additional capabilities which have been developed for
the Communications Link and Error ANalysis (CLEAN) simulation program.
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I. INTRODUCTION

This report describes research performed to date on NASA Grant NAGS5-2006 for the
period August 16, 1992 through March 30, 1993. This work involves characterizing errors
exhibited by the Ku-band downlink through the Tracking and Data Relay Satellite (TDRS)
which is to be used for the Earth Observation System (EOS). Also involved in this work is a

performance study of various forward error correcting coding schemes on anticipated burst
errors.

For the period August 16, 1992 to December 30, 1992, a simulation was developed, called
the Communication Link Error ANalysis (CLEAN), to

1) simulate typical errors which may occur in the EOS downlink,

2) simulate/implement various error correcting codes including Reed-Solomon and Con-
volutional codes,

3) analyze error sequence data.

A description of the work performed can be found in the first semi-annual report [1]. The devel-
opment of a simulation tailored to the EOS downlink was necessary to investigate issues which
do not lend themselves to theoretical analysis and also to be used as a tool to study actual EOS
downlink error data acquired by NASA Goddard Space Flight Center (GSFC).

For the period January 1, 1993 to March 30, 1993, the work accomplished includes
1) the continuing development of that simulation,

2) partial results from the error correcting coding study on anticipated (bursty) EOS
downlink errors,

3) partial results on the study to characterize the errors resulting from the actual EOS
downlink data acquired by NASA/GSFC.

4) results on a study initiated to investigate synchronization issues, including estimates of

the average data loss before synchronization is achieved for the actual EOS downlink
data.

This work, except for the synchronization study, directly addresses items (A) through (D) in the
statement of work for this contract, proposal number 92-3-272, Mississippi State University.

Section II of this report describes the study of the actual EOS downlink data. Section III
describes the Ku-band code performance results followed by Section IV which describes the syn-
chronization study. Finally, Section V describes additional developments of CLEAN.



II. TDRS Ku-BAND ERROR CHARACTERISTICS FOR EOS

The Consultative Committee for Space Data Systems (CCSDS) has established a data
transfer frame format to be used for space based communication systems [2]. A prototype Wide-
band Transfer Frame Formatter (WTFF), used to construct CCSDS transfer frames, was built at
NASA/GSFC and used to derive error sequence data for the Ku-band return link through TDRS
in June 1992 [3].

A simplified block diagram of the Ku-band return link is shown in Figure 1. The CCSDS
transfer frames were sent through the uplink via the Ku-band using one arm of a Quadrature
Phase Shift Keyed (QPSK) modulation scheme, and then echoed back to the White Sands
Ground Terminal (WSGT) through TDRS. The signal experienced noise and possible Radio
Frequency (RF) interference before being received and demodulated at WSGT. The actual data
is represented by binary transitions, i.e. a binary "1" is represented by a binary transition, "01" or
"10", and a binary "0" is represented by no binary transition, "00" or "11". The NRZM decoder
converts the received binary sequence into the data sequence. For the tests conducted, only a

Reed-Solomon code was used instead of the CCSDS standard Reed-Solomon/convolutional con-
catenated code [4].

The error sequence files received represent the errors at the NRZM decoder output. Each
received error sequence file was converted to the format required by CLEAN using program
EOSCONYV [1]. As shown in Table I, a total of 16 error sequence files were received by MSU
from NASA/GSFC with error probabilities ranging from roughly 10 to 10°®. The files range in
size from 260kbytes to 33.5Mbytes representing error sequences from 2x10° binary values to
2.6x10° binary values. However, an anomaly in the data, described in Section C below, was dis-
covered after the data was processed. After discussions with Victor Sank at GSFC, it became
evident that the data processed for this report may not be valid. In any case, we present our
findings below for completeness.

To summarize, we found the data to contain random occurrences of error events where
each error event consists of two consecutive errors, subsequently called a double error. Since the
NRZM decoder will output a double error for each single error input, we conclude that the
channel errors at the demodulator output are random. However, this does not preclude the
possible occurrence of error bursts due to man made or natural RF interference. Therefore in
Section III below, we present performance results for various coding schemes over channels in
which burst errors occur.
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Figure 1. Simplified block diagram of the Ku-band downlink through TDRS.



Table I.

mat conversion using program EOSCONV.

Parameters of the Ku-band downlink data received by MSU from GSFC [3] after for-

File Error Sequence | Number of Errors™ | Error Density
No. [ Original Name Length (Bit Error Rate)

1 | wser641621.dat 2,087,325 12 5.7x10°

2 | wser641623.dat | 268,426,275 1318 4.9x10°®

3 | wser641716.dat 2,087,325 16 7.7x10°

4 | wser641721.dat | 268,426,275 7556 2.8x10°°

5 | wser641837.dat 2,087,325 412 2.0x10*

6 | wser641839.dat | 201,314,595 41724 2.1x10%*

7 | wser641851.dat | 241,966,335 472582 2.0x10°

8 | wser641908.dat 2,087,325 38 1.8x10°

9 | wser641909.dat | 134,213,130 2522 1.9x10°

10 | wser641944.dat | 268,426,275 567820 2.1x10°

11 | wser642045.dat | 268,426,275 136 5.1x107

12 | wsfler641917.dat | 222,034,395 3151969 1.4x107

13 | wsfler641932.dat 2,087,325 37184 1.8x107

14 | wsfler641934.dat | 134,192,670 2262860 1.7x107

15 | wsfler642037 .dat 2,087,325 50594 2.4x107

16 | wsfler642038.dat | 125,853,600 3654733 2.9x107

" Not correct due to a format conversion inherent in FORTRAN




One method of determining burst error statistics, specifically the burst length distribution,
is by segmenting the error sequence into error burst regions separated by error free gaps. In Sec-
tion D, the theoretical burst length distribution using the "gap" segmenting method, is derived for
random channel errors. This can be used as an additional test to determine if the channel errors
are random.

A. Double-Error Interval Distribution

After displaying several of the error sequences, it became evident that the channel errors at
the demodulator output may be random which will result in random occurrences of error pairs at
the NRZM decoder output. Two methods were used to determine whether the error events are
indeed random. These are described in the following two sections.

1. Cramer Von-Mises Distribution Test

The first method makes use of the Cramer Von-Mises distribution test to determine
whether the occurrences of the double errors were indeed Binomial (random). The procedure
required that the errors at the demodulator output be determined from the errors at the NRZM
decoder output as shown in Figure 1. Each error at the demodulator output corresponds to the
occurrence time of a double error at the NRZM decoder output. To this end, an NRZM encoder
program was developed (see Section V below) to reverse the effect of the NRZM decoder giving
the raw error sequence at the demodulator output. Once the error sequence at the demodulator
output is constructed, the Cramer Von-Mises (CVM) distribution test can be applied to see if
they are Binomial. The CVM test will determine, with confidence level a, whether the hypoth-
esis that the errors are Binomially distributed (random) can be rejected.

*** PARAGRAPH DELETED ***

Note: An apparent anomaly in the data was due to an incorrect format conversion of the origi-
nal data due to a program language (FORTRAN) bug. The problem has been fixed but not
before the results for this report were completed. The results given below are still valid,
however now additional results (not presented here) are possible with the corrected data. All
references to data inversions or anomalies in subsequent paragraphs should not be interpreted
literally. No data inversions exist in the real EOS data obtained from GSFC.

As a result of an apparent anomaly (which has been since resolved), the CVM test could
not be applied to full sequences although some results were obtained by processing partial
sequences which did not include the data inversions. The hypothesis for the CVM distribution



test is that the errors are indeed Binomial. The CVM distribution test states that the hypothesis
should be rejected, with confidence coefficient a, if the test statistic, computed from the error
sequence, is greater than the critical value, computed from the theoretical Binomial error distri-
bution given Binomial errors [5]. Critical values for various confidence coefficients, taken from
[5], are given here for reference.

o | Critical Value
0.1 0.347
0.05 0.4610
0.025 | 0.5810
0.01 0.743
0.001 1.168

The confidence coefficient, o = 0.05 for example, simply means that if the errors are truly Bino-

mial, then the test statistic will not exceed the critical value (hypothesis will not be rejected)
(1 — o) x 100 =95 times out of 100.

The CVM test was applied to portions of the NRZM encoded data, corresponding to the
data at the demodulator output, using a confidence coefficient o =0.05 with critical value
0.4610. File wsfler642037.dat was truncated to eliminate all the data inversions and the CVM
test was applied. The test statistic computed was 0.105 which is less than 0.4610. Therefore, the
hypothesis that the errors are Binomial would ot be rejected. As another case, file
wsfler641932.dat was truncated and the CVM test was applied giving a test statistic value of
0.365 which is less than 0.4610. As a final example, the CVM test was applied to the entire
wser641837.dat file (no data inversion was found) giving a test statistic value of 0.199. For con-
fidence coefficients 0.05 and below, the hypothesis could not be rejected in all cases. Therefore,
based on these limited results, it is concluded that the double errors occur randomly.

As a final note, the CVMblk program was applied to those same error segments. Prelimi-
nary results suggest that there may be some variation in the error density over small regions on
the order of a WTFF but no conclusions have been drawn.

2. Theoretical GAP Distribution

The second method used to demonstrate that the error events occur randomly used the
GAP method of segmenting an error sequence, see program GAPest in [1]. The GAPEst pro-



gram, with GAP = 1, was used to look for consecutive errors in the error sequence. Since the
errors at the NRZM decoder output must occur in pairs, the GAPEst program treated each double
error as a burst. The GAPEst program outputs the burst interval distribution to a file. If the
double errors occur randomly, then the burst interval distribution (each error pair constitutes a
burst) must follow the theoretical interval distribution for Binomial errors. Note that it is possi-
ble for consecutive channel errors to occur at the demodulator output. When this occurs, error
pairs will not be observed at the NRZM decoder output. Although this will bias the burst
interval distribution, the probability that this occurs is small so the effect is negligible.

Given that an error occurs, let L, denote the event that an error free interval of lengthi-1

occurs followed by an error. An error sequence consisting of Binomial (random) errors with
error probability p, has a theoretical error interval distribution given by,

P{L}=q""p (1)
where ¢ =1 - p. Program IntvBin was written to compute this theoretical distribution.

Figure 2 shows the empirical double-error interval distribution for file wsfler642038.dat
along with the theoretical Binomial error interval distribution calculated from (1). Clearly the
curves match very well. Similarly, Figure 3 shows the empirical double-error interval distribu-
tion for file wsfler641932.dat along with the theoretical distribution. Again, the curves match

well. Both of these files correspond to error densities at the NRZM decoder output of about
2x1072,

To determine whether the statistics vary with error probability, the empirical double-error
interval distribution was computed for files wser1944 dat and wser641851.dat. These are shown
in Figure 4(a) and Figure 5(a) respectively. However, the variance of the distribution estimate is
quite large due to the fact that relatively few occurrences for each interval length were found
(this is the reason for the apparent quantized look of the probability values). Therefore, the dis-
tribution was filtered by accumulating every 16 discrete distribution values. These are shown in
Figures 4(b) and 5(b), respectively, along with filtered versions of the theoretical distributions.
Again, the curves shown match extremely well. As in the previous section, if is concluded that
the double errors occur randomly.

B. Theoretical GAP distribution for Random Errors

In this section, the theoretical burst length distribution, using the GAP method to segment
an error sequence, is considered. It has been shown in the previous section that the errors for the
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Ku-band downlink are random occurrences of double errors. Deriving the exact burst length dis-
tribution for these error characteristics is not trivial. However, it is possible to derive the theoret-
ical burst length distribution assuming Binomial (random) errors. Clearly, this theoretical
distribution should be somewhat related, perhaps in shape, to the theoretical burst length
distribution for random occurrences of double errors. In this section, the theoretical burst length
distribution, using the GAP method to segment the error sequence, is derived for Binomial (ran-
dom) errors.

Suppose that the GAP method for segmenting an error sequence is applied to a sequence of
Binomial (random) errors, with error probability p, using a gap length of g. This requires that
consecutive error bursts be separated by an error free gap of at least g error sequence values. Let
L; denote the event that an error burst of length i occurs. To compute the probability that L,
occurs, it is assumed that an error free gap has occurred which must be followed by an error.
Then P {L;} is the probability that a burst of length i occurs followed by an error free gap (which
satisfies the assumption for the next burst occurrence). Three cases are considered separately.

First consider event L,, which represents an error burst of length 1. Given that a gap has

occurred (which must end with an error), L, will occur if an error free gap of length g occurs.
Since the probability that an error occurs is assumed to be p, we have

P{L}=(1-p)=4° (2)
where g = 1 — p is the probability that a correct error sequence value occurs.

Second consider the event L, for 2<i < g + 1. Since each error burst must begin and end

with an error, these errors are referred to as the terminal errors of the burst. Let the error
sequence values for event L, be assigned labels s,, s,, 55, ..., 5; as shown in Figure 6. The termi-
nal errors for the burst correspond to s, and s;. Since a burst of length g + 1 has g — 1 error
sequence values between the two terminal errors, it is not possible for a gap of length g to occur
within the error burst. Therefore, the probability that a burst of length 2 <i < g + 1 occurs is
only a function of the probability that an error occurs for error sequence value s, followed by an
error free gap of length g. This gives,

P{L}=pq® , 2<i<g+l (3)

Note that this probability is not a function of the burst length.



1 Terminal errors ——1

0’s =e 5 & Sio1 S Siy S s,=e 0’s
L  S1FE Sy Sy S Sig ) S S SEe

error free gap error free gap

Figure 6. Illustration of the error sequence values for an error burst.
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Third consider the event L, for i 2 g +2 (see if this is the same as the derivation in the

handwritten write-up). For a burst of length i to occur, the burst must be composed of sufficient
errors between the two terminal errors so that no gap of length g occurs, otherwise the segmenta-
tion process would break those errors into two bursts. Let W, denote the event that no error free
gap of length g occurs for the error sequence values s, through s;. With this definition, it is
possible to express the burst length probability as

P{L}=P{W,_\}pq® , i2g+2 4)
It is only necessary to specify P {W,_,}.

Although no closed form expression for P {W;_,} has been found, a recursion formula with

known initial conditions is derived below which completely specifies P{W,_,}. Let ¢; denote the
event that s; is in error and let e; denote the event that s, is not in error. Consider the following

cases:
Case 1: ¢;_, occurs. For this case, event W;_, will occur if W, _, occurs. The probability

that e;_, occurs is given by p.

Case 2: ¢;_,ande,_, occur. For this case, event W, _, will occur if W, _, occurs. The

probability that e; _, and e, _, occur simultaneously is given by pq.

Case3: e,_3,€,_,,e,_, occur. For this case, event W,_, will occur if W, _, occurs. The
probability thate;_;, e;_,, and e;_, occur simultaneously is given by pg*.

The cases to be considered continue in a like fashion until we have,

Caseg—1: €_,41,€,.542, ", €;_, occur. For this case, event W,_, will occur if W, _,

occurs. The probability thate, _,,,,e;_,,,, -, e,_, occur simultaneously is
given by pg® 2.

Caseg: € _;,€, 441, ", €;_ occur. For this case, event W,_, will occur if W oo
occurs. The probability thate;,_,,e,_,,;, -, e,_, occur simultaneously is given
by pg*~".

Now observe that the events described in cases 1 through g above are mutually exclusive. That
is, an error burst pattern of length i must fall under one of the cases identified above and yet no

error burst pattern can fall under two or more of the cases simultaneously. Therefore, by the
theorem of total probability, P {W,_,} can be expressed as
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g-1 .
P{W,_\} = _):OP{W,v-,--z}pq’, i2g+2 (5)
J=

The iteration is initialized by defining,

0 i<l

6
1 1<i<g+l ©

P{W.--1}={

Note that when i = g +2, there are exactly g binary symbols between the terminal errors. The
only way the GAP segmenting process would split the terminal errors is if all the symbols
between the terminal errors were error free. Clearly, the probability that this occurs is g® which

means P{W, ,,} must equal 1 -g*. It can be shown that P{W,,,}, evaluated using (5), reduces
to 1 —4°.

In this section, the burst length distribution resulting from the GAP segmentation process
for random errors has been derived. The probability that a burst of length i occurs is P {L;} given

by (2), (3), and (4). To compute P{L,} for i > g +2, (5) must be evaluated with initial conditions
given by (6). Program BinGAP performs these calculations.

To verify the derivation, CLEAN was used to generate the empirical burst length distribu-
tion, by executing the GAP segmentation process, on synthetically generated Binomially distrib-
uted errors. Figure 7 shows close agreement between the theoretical burst length distribution and
the empirical distribution for Binomial errors with error probability of 0.05 and GAP length of 6.
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ITII. TDRS Ku-BAND CODE PERFORMANCE

An efficient codingfinterleaving scheme is one which provides the required performance,
such as 10”° bit-error probability or perhaps 2db coding gain, with minimal overhead (maximum
information throughput) and with minimal delay. All error correcting codes provide a perform-
ance gain, in the form of a reduced error probability and/or in the form of a reduced required
transmitter power. However, when an error correcting code is inserted into an existing data link,
this gain is achieved at the expense of information rate throughput. The reduction in information
throughput when an error correcting code in inserted in an existing system is identically equal to
the code rate.

For typical space communication links, it is required that the downlink provide a 10 error
probability. Therefore given this requirement, the problem becomes one of selecting an error
correcting code which provides the required error probability with minimum code rate. The
CCSDS concatenated coding standard consists of a rate 1/2 convolutional inner code and a
(255,223) RS outer code. The net concatenated code rate is ( 1/2)(223/255) = 0.437. Although
the concatenated code will undoubtedly achieve the required error probability, it is not necessar-
ily the best code choice for EOS which is to use the Ku-band downlink through TDRS.

In Section A that follows, the performance of the (255,223) RS code operating on burst
errors is considered. In Section B, a comparison of various coding schemes including the
CCSDS concatenated code is considered on typical errors occurring at the NRZM decoder output
as characterized in Section II above.

Before proceeding, an issue of concern is the reliability of decoded error probability esti-
mates obtained by the simulation. Preliminary work indicated that the simulation run length,
required to achieve small variance estimates of the decoded error probability for a (255,223)
Reed-Solomon coded system, must be very long. Background work has indicated that the
decoder must output a large number of errors, on the order of many hundreds, before a small
variance estimate of the decoded error probability is achieved. This background work culmi-

nated in a paper which has been submitted to the IEEE Military Communications Conference,
1993 [6].

A. Burst Duration Study for a Reed-Solomon Code
The (255,223) RS code has a code rate of (223/255) = 0.875 which is exactly double the

code rate of the concatenated code. Therefore, eliminating the convolutional inner code immedi-
ately provides a factor of 2 increase in the information rate throughput of the system. However,
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this is acceptable only if the decoded error probability meets the required 10”, or lower, error
probability specification. A proposed coding scheme for the EOS downlink consists of
(255,223) RS encoded data frames multiplexed in the form of a CCSDS transfer frame. A
CCSDS transfer frame consists of 5 multiplexed RS encoded data streams which provides the
effect of a depth 5 block interleaver. Therefore, the system under study in this section consists of
a (255,223) RS code used with a depth 5 byte-oriented block interleaver. Note that the following
results do not incorporate the use of NRZM data. The results in this section are intended to dem-
onstrate the efficiency with which RS codes can correct burst errors. For the final report, results
will be shown for bursty errors which incorporate the use of NRZM data.

It is well known that space based communication systems operate over channels which
exhibit random errors along with error bursts. Therefore, in this section, we consider the per-
formance of the proposed coding scheme operating on burst errors. Burst errors can be charac-
terized by four distributions/parameters: burst duration distribution (d), rate of burst occurrence
(v), error probability within the bursts (P,,), and error probability outside the bursts (P,). The
following analysis consists of two cases considered below.

For the first case, it is assumed that error bursts occur so infrequently that only one error
burst will occur within a single interleaved block. In this case, the required error probability will
be achieved if the maximum anticipated error burst can be corrected. A (255,223) RS code can
correct a maximum of ¢ = 16 code symbol errors or (16)(8) = 128 binary symbol errors. Since
an error burst is split into 5 segments by the depth 5 block interleaver, a total error burst of length
(128)(5) = 640 is correctable provided no other errors occur within the interleaved block. For a
75Mbps channel rate, this corresponds to an RFI interference burst of 8.5|isec in duration. For a
150Mbps channel rate, corresponding to the high data rate requirement, this corresponds to an
RFT interference burst of 4.3psec in duration.

However, it is probable that random errors will occur within an interleaved block at the
same time that an error burst occurs. To consider the worst case, suppose that the binary channel
error probability, excluding error bursts, is 0.005. Each interleaved block contains a total of
(255)(8)(5) = 10,200 binary symbols (10,200/8 = 1275 code symbols) which means that an aver-
age of (0.005)(10,200) =51 binary symbol errors will occur within each interleaved block.
These binary symbol errors will cause 1275[1 — (1 —0.005)*] = 50 code symbol errors [7].
Therefore, each interleaved block can correct, on average, an error burst of length
8[(16) (5) — 50] =240 binary symbol errors. This corresponds to an RFT burst of length 3.2usec
and 1.6lsec in duration for the current requirement and for the high data rate requirement,



respectively. The following is a table giving the average correctable burst lengths, in binary
symbol errors, for different values of the binary channel error probability (excluding error
bursts).

Average
Binary Channel | Maximum Correctable
Error Probability Error Burst
0.01 Zero
0.005 240
0.001 560
0.0005 600
0.0001 632

For the second case, it is assumed that error bursts occur frequently enough that the proba-
bility of multiple bursts occurring per interleaved block cannot be ignored. For this case, per-
formance is strongly related to the burst duration, burst rate product vd, the ratio of random
errors to burst errors R,, and the channel error probability. Figure 8(a) shows the decoded error
probability, called the Bit-Error Rate (BER), for a (255,223) RS coded system with a depth 5
block interleaver, with vd = 0.05, and with a channel error probability of P,, =0.004. The chan-
nel error probability is the error density at the demodulator output due to all errors whether they
are caused by thermal noise or RFI. Clearly, for burst durations less than 75 binary symbols,
performance increases as R, the fraction of random errors to total errors, decreases. This is
due to the fact that an RS code is a byte oriented code and demonstrates the efficiency with
which an RS code can correct bursty errors. However, for burst durations greater than 75 binary
symbols, performance decreases as R, decreases due to the fact that each error burst which fills
the interleaved block causes decoding failure for the 5 RS codewords contained within that inter-
leaved block. The result is a decrease in system performance.

Figure 8(b) shows the decoded BER for the same parameters used for Figure 8(a) but with
vd =0.01. Note the scale change for the abscissa. Although the curves do not all cross at a com-
mon point, it still appears that performance increases with decreasing R, for burst durations less
than 75 binary symbols. Indeed, the achievable error probability for R, = 0 (all errors occur in
bursts) is much below the required 10 for all burst durations below 75 binary symbols. In fact,
the achievable error probability for R, = 1/4 is below the required 10°° for all burst durations
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Figure 8. Performance of a (255,223) Reed-Solomon code with a depth 5 block interleaver
operating on bursty errors with P, = 0.004 and with (a) vd =0.05, and (b) vd =0.01.
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below 75 binary symbols. Using obvious decoded BER trends as a function of defined parame-
ters, the conclusion can be drawn that the decoded BER achieves the required 10 error probabil-
ity when the following conditions are met:

a) d <75 binary symbols
b) vd <0.01

c) P, <0.004

If these conditions are not met, then the decoded BER may or may not achieve the required BER,
however the following trends are noted:

a) Decoded BER decreases with decreasing R, assuming d less than some threshold

b) Decoded BER decreases with decreasing vd
¢) Decoded BER decreases with decreasing P,

d) Decoded BER decreases with increasing interleave depth
More results will be provided in the final report.

B. Comparison of Coding Schemes

In Section II above, it is concluded that the errors at the demodulator output are random
which gives random occurrences of error pairs at the NRZM decoder output. In this brief sec-
tion, a comparison of various coding schemes operating on the types of errors anticipated at the
NRZM decoder output is given.

Figure 9 shows the decoded BER as a function of the raw error probability at the demodu-
lator output for various coding schemes including a (255,223) RS code, rate 1/2 constraint length
7 convolutional code (CCSDS standard inner code) without a Periodic Convolutional Interleaver
(PCI), the same convolutional code with a PCI, the CCSDS standard concatenated code, and a
stand alone (255,223) RS code using erasure decoding. The results indicate that the concate-
nated code performed the best. However, again it is emphasized that the best code choice is the
one with the lowest code rate and complexity that meets the 10”° specification (or other
specification). The following is a summary of the raw error probability at the demodulator out-
put required to give a decoded BER of 107 for the various coding schemes.
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Comparison of various coding schemes assuming random errors at the demodulator
output. These results assume that an NRZM decoder follows the demodulator so that
the errors input to the error correcting decoder are random occurrences of error pairs.
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Demod Output BER
Code Type required to achieve 10

CCSDS Concatenated 105

Convolutional, PCI 1028

(255,223) RS (Erasure decoding) 1021
Depth 5 Block Intlv

(255,223) RS (Errors only decoder) 1025
Depth 5 Block Intlv

Convolutional, no PCI 10265

If it is possible to achieve at 10°*° BER at the demodulator output, then the best code choice is
the (255,223) RS code. This code has a higher code rate than either the convolutional code or
the concatenated code. The (255,223) RS code is also efficient at correcting error bursts as
shown in Section A above. However, to conclude that the (255,223) RS code is the best choice
requires that performance be investigated for bursty errors which would occur at the NRZM
decoder output. More results will be given in the final report.

Note that, as shown in Figure 9, the (255,223) RS code used with erasure decoding per-
forms as well as the convolutional code with the PCI for decoded error probabilities of 10 and
below. It is prudent to use erasure RS decoding when RFI is present in the channel due to the
fact that erasure decoding can correct, at best, twice as many errors per codeword than an errors
only decoder. It is possible to predict code symbol errors at the decoder input which are likely to
be in error by investigating soft decision values output by the demodulator [8].
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IV. SYNCHRONIZATION

There are two fundamentally different facets of a communication system which relate to
user data at the receiver; synchronization and steady state operation. Synchronization is the pro-
cess by which the receiver attempts to extract timing information from the received signal so that
optimum demodulation of the transmitted data can be achieved. While synchronization is
attempted, data transmitted across the link is lost. This gives rise to highly unreliable and there-
fore unusable data to the user. Once synchronization has been achieved, steady state operation
of the receiver provides highly reliable, although not error free, data to the user which is usable.

If the communication system is viewed as a system which processes binary data at the
input to give nearly identical binary data at the output, then synchronization would correspond to
the transient portion of the system and the steady state error operation (once synchronization has
been achieved) would correspond to the steady state response of the system. Although these two
facets of the system are related, the data output by each is treated differently, one gives rise to
unusable data (synchronization) and one gives rise to usable data (steady state operation), which
allows them to be analyzed separately. Steady state error statistics has been investigated in Sec-
tions IT and I1T above. In this section, synchronization is considered.

Although synchronization issues were not a formal part of the statement of work for this
contract, the investigators feel that it is an important issue which must be investigated in con-
junction with steady state error statistic studies.

The CCSDS recommendation for Packet Telemetry [2] requires that a 32 bit PN sequence
header precede each CCSDS transfer frame. Synchronization is said to be achieved when two
consecutive 32 bit PN sequence headers are correctly detected. In the following development,
the average number of frames lost before achieving synchronization is derived for random chan-
nel errors. This provides a measure of how much data would be lost, on average, before achiev-
ing synchronization for the Ku-band downlink.

To achieve synchronization, a 32 bit window is applied to the hard decision data at the
demodulator output. Detection of the 32 bit PN sequence pattern is assumed to occur when the
Hamming distance between the transmitted PN sequence header and a 32 bit pattern at the
receiver is less than or equal to the preselected threshold, Q. In other words, detection occurs
when at least 32-Q of the 32 bits match the original PN sequence pattern. For each 32 bit pattern
considered, one of two possibilities exist. Let H, denote the event that the 32 bit pattern corre-
sponds to the transmission of the 32 bit sequence header and let H, denote the event that the 32
bit pattern does not correspond to the transmission of the 32 bit sequence header. If detection of
the 32 bit sequence header occurs given H,, then the 32 bit sequence header is correctly detected.
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Let the probability that this event occurs be denoted P,. If detection of the 32 bit sequence
header occurs given H,, then false detection occurs. Let the probability that this event occurs be
denoted Py,.

If there are no channel errors, then the PN sequence header would be detected every time,
each detection spaced exactly 10,200 binary symbols apart corresponding to the 5 RS codeblocks
of data which follows each header. Synchronization is said to be achieved when two consecutive
PN sequence headers are detected by the correct binary symbol spacing.

Suppose the channel errors are random and occur with probability P,,. Then the distribu-

tion of errors within each 32 bit PN sequence header at the receiver is given by a Binomial distri-
bution. Let h; denote the event that i binary symbol errors occur given H,. Then the probability
that h; occurs is given by

32

P{h} =( ) P, (1-P,)*" ¢

i
If the threshold is used to declare detection of the 32 bit PN sequence header, then detection will
occur when h; for i < Q occurs given H,. That is,

PP, Ho} = . P{h} ®

If it is assumed that the binary symbols corresponding to the data are completely random (and
the PN sequence header is delta correlated), then the probability of false detection is easily
shown to be

32
e -4(%)(2
Since there are 10,200 binary data symbols per frame, there are 10,200, 32 bit sequences per
frame which can result in false detection. Therefore, the probability that false detection occurs in
a given frame is (10,200)P {P | H,}. For P, < 0.1, it is easily shown that

(10,200)P {Py | H,} « P{P, | Hy}. So (7) and (8) define the probability that the 32 bit PN
sequence header will be correctly detected using the simple thresholding technique with thresh-
old Q.

Synchronization is said to be achieved when two consecutive PN sequence header detec-
tions occur which are spaced apart by the proper number of binary symbols. The average num-
ber of frames lost will be the average number of missed PN sequence headers before two
consecutive detections occur. This problem is not unlike that of determining the theoretical burst
length distribution described in Section II.A.2 above. For the moment, view each received
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CCSDS transfer frame as a single entity. Consider generating a frame detection error sequence
by substituting a single error symbol in a newly generated error sequence for each frame
received. A binary O in the frame detection error sequence is used to denote the correct detection
of the 32 bit PN sequence header. A binary 1 in the frame detection error sequence is used to
denote a missed detection of the 32 bit PN sequence header. Then synchronization is achieved
when two consecutive binary zeros occur in the frame detection error sequence because this cor-
responds to two consecutive correct detections of the 32 bit PN sequence header. The average
number of binary symbols passed before two consecutive zeros occur corresponds to the number
of missed frames before achieving synchronization. This average can be found by generating the
frame detection error sequence, applying the GAP error segmentation method, and determining
the average burst length. The results of Section I1.A.2 can be used directly to determine the burst
length distribution using the probability of PN sequence header detection P{P, | H,} in place of
the channel error probability, p, used in the development in Section II.A 2.

Letp=1-P{P,|Hy},q =1-P{P,| Hy}, and let L, denote the probability that i frames

are past before achieving synchronization, i.e. two consecutive correct 32 bit PN sequence
header detections. Then the probability that L, occurs for g =2 is given by (2) through (6) to be

qz, i=1
P{L}= pq’, 2<i<3 (10)
P{W,_\}pq*, iz24

where

l .
P{W,.}= £ P{W,_,,}pq’, i24 (1
Jj=
and where the iteration is initialized by

i<l

1<i<3 (12)

L

Therefore, the probability that i frames are lost before achieving synchronization is given by (10)
along with (11) and (12).

To establish the average number of frames lost before synchronization occurs, consider the
fact that the starting point for the search to detect the 32 bit PN sequence headers can start any-
where within a frame. If it is assumed that the starting point is equally likely to be anywhere
within the first frame, then the average number of frames lost will be 1/2 plus the average frames
lost after the first PN sequence header is encountered. Using this along with (10), the average
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number of frames lost before synchronization is achieved, denoted F, can be determined. Note
that it is assumed that the data between the two correctly detected PN sequence headers is usable
data and therefore does not constitute a lost frame. Given this we have

F=ls { i P{L} (13)

(S AR

where the 1/2 accounts for the uniformly distributed starting point within a frame. Note that the
average data loss, in binary symbols, can be found by simply multiplying F by the data length in
each frame. Program SyncPb was written to calculate F for a given channel error probability P,;.

Figure 10(a) shows the average number of frames lost before achieving synchronization as
a function of the channel error probability assuming that the channel errors used to detect the PN
sequence are independent. The figure shows that simulation results for a threshold of 0 =2
match very well with the theory. Figure 10(b) shows the average number of frames lost before
achieving synchronization as a function of the PN header detection failure probability. This
result shows that as long as the PN header detection failure is less than about 10™* =0.18, syn-
chronization will be achieved within a frame or two. Program ’Sync’ has been written to mea-
sure the average frames lost for an actual error sequence input to the program.

The Sync program was used to estimate the average number of frames lost for each of the
real EOS data files received from GSFC. The results show that synchronization is not a problem

for any of the real error sequences. The worse case arose for file wser642038.dat which yields
an average of 0.6 frames lost before achieving synchronization.
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V. FURTHER DEVELOPMENTS FOR CLEAN

This section briefly describes additional capabilities which have been added to CLEAN.
The capabilities have been divided into two main sections. In Section A, additional error
sequence manipulation programs, which represent system components, are briefly described and
in Section B, programs written to evaluate theoretical formulas are briefly described.

A. System Component Program Modules

To more accurately represent the real EOS Ku-band downlink and to manipulate error
sequences, several new programs were written.

1. NRZMEncd (NRZM Encoder)

This program performs differential (NRZM) encoding on the error sequence. That is, the
encoder output toggles (changes binary status) when the input bit is a binary "1" and remains the
same when the input is a binary "0". The program reads in the error sequence by block and per-
forms differential encoding on each block and then writes the modified block back out to the
error.seq file.

Executing the program causes the ’error.seq’ file to be read which contains an error
sequence (in packed format). The ’error.seq’ file must exist prior to the execution of this pro-
gram. There are no assumptions associated with the implementation or output of this program.

2. NRZMDec (NRZM Decoding)

This program performs differential (NRZM) decoding on the error sequence. That is, the
decoder outputs a binary "1" when a transition occurs on the input data stream (a "0" followed by
a"1"ora"l" followed by a "0"). A binary "0" is output when no transition occurs (a "0" fol-
lowed by a "0" or a "1" followed by a "1"). The input error sequence is assumed to be stored in
default file ’error.seq’ and the differentially decoded data stream is also output to that file.

The program reads in the error sequence by blocks and performs differential decoding on
each block and then writes the modified block back out to the error.seq file. The program out-
puts several statistics to the user screen as well.
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Executing the program causes the ’error.seq’ file to be read which contains an error
sequence (in packed format). The ’error.seq’ file must exist prior to the execution of this pro-
gram. There are no assumptions associated with the implementation or output of this program.

3. Sync (Synchronization)

This program calculates the synchronization probability for a synchronization scheme in
which each data frame is preceded by a PN sequence header. Synchronization will be said to
occur when two consecutive PN sequences have a Hamming distance less than or equal to the
Threshold. The synchronization probability is calculated by considering all consecutive pairs of
PN sequences in the error sequence and counting the percentage which would achieve synchroni-
zation.

This program inputs parameters from an ASCII data file with default name *Sync.prm’ and
inputs the error sequence from data file with default name ’error.seq’. Various statistics are out-
put to an ASCII data file with default name *Sync.ID’, where ID is a three letter identifier for the
current run which is input from file "ID.prm”’.

The program is run by editing the parameter file ’Sync.prm’ and selecting the appropriate
parameters and by choosing a program ID by editing file "ID.prm’. The ’error.seq’ file must
exist prior to the execution of this program.

4. DisplSeg (Display a Segment of the error sequence)

This program displays a segment of the error sequence found in file ’error.seq’. It is
assumed that the errors stored in error.seq are in the DBESS (Double Byte Error Sequence Sym-
bol) packed format. The program is interactive and asks the user to input the starting address of
the segment to be displayed as well as the segment length.

5. SvHist (Save Histogram as a pdf)

This subroutine writes out a histogram array, as a probability density function (pdf), to a
file in real*8 format. The unit attached to the opened file is 10. At the time that this subroutine
is called, unit=10 must not be
assigned.

This subroutine also outputs statistics of the pdf to the user screen and also to the log file
assumed to be open as unit=8.
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6. SeqTrunc (Sequence Truncation)

This program truncates an error sequence in length by modifying the value of N stored in
the error sequence file header. This program is meant to be fast (the truncation only requires that
a single value in the error seq be modified) but this method is clearly memory inefficient due to
the fact that the error.seq file size remains unchanged.

7. ASCII (ASCII conversion program)

This program converts a pdf, stored as real*8, to an ascii format. The ascii output file has
a header which identifies the index and value columns followed by a series of records of the
form XY where X is the index value and Y is the sequence (pdf) value.

This program will convert individual files or can convert a series of data files and combine
them into a single ASCII file. There are no assumptions associated with the implementation or
output of this program.

B. Theory related programs

Several programs have been written to evaluate the theoretical formulas discussed in pre-
vious sections of this report.

1. IntvBin (Theoretical PDF for Binomial Errors)

This program calculates the theoretical error interval probability density function for an
error sequence in which the errors are independent. This calculation is easily derived but is also
documented in, Kenneth Brayer, "Error Patterns Measured on Transequitorial HF Communica-
tion Links", IEEE Trans on Comm Tech, Vol COM-16, No. 2, April 1968, p. 216. The probabil-
ity of getting an n-bit gap is:

P{C"|e}= ¥ p(1-p)

The program outputs the pdf to file *IntvBin.pdf’ which is a direct access file where each
real*8 pdf value is stored per record.
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Note that there are NO parameters to be read in for this program. However, various statis-
tics are output to an ASCII data file with default name 'IntvBin.ID’, where ID is a three letter
identifier for the current run which is input from file *’ID.prm’. There are no assumptions
associated with the implementation or output of this program.

2. BinGAP (Binomial error GAP distribution)

This program calculates the theoretical GAP burst length distribution for Binomially dis-
tributed errors which is described in Section I1.B above. The final distribution is output to file
"BinGAP pdf’ as a pdf file. This program inputs the GAP parameter from the user interactively.
Various statistics are output to an ASCII data file with default name "BinGAP .log’.

3. SyncPb (Synchronization with the Channel error probability)

This program calculates the synchronization probability for a synchronization scheme in
which each data frame is preceded by a PN sequence header. Synchronization will be said to
occur when two consecutive PN sequences have a Hamming distance less than or equal to the
Threshold. The synchronization probability is calculated by considering all consecutive pairs of
PN sequences in the error sequence and counting the percentage which would achieve synchroni-
zation.

It is assumed that the binary channel errors are independent. This program inputs parame-
ters from the user interactively. Various statistics are output to an ASCII data file with default
name 'SyncPb.ID’, where ID is a three letter identifier for the current run which is input from
file 'ID.prm’.

4. SyncPPN (Synchronization with probability of PN detection failure)

This program calculates the synchronization probability for a synchronization scheme in
which each data frame is preceded by a PN sequence header. Synchronization will be said to
occur when two consecutive PN sequences have a Hamming distance less than or equal to the
Threshold. The synchronization probability is calculated by considering all consecutive pairs of

PN sequences in the error sequence and counting the percentage which would achieve synchroni-
zation.
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This program inputs parameters from the user interactively. Various statistics are output to
an ASCII data file with default name ’SyncPPN.ID’, where ID is a three letter identifier for the
current run which is input from file ’ID.prm’.

5. QuantPDF (Quantize PDF)

This program inputs a pdf from a file and quantizes it into ranges specified by the user.
The values for the Quantized PDF are found by integrating (summing) the PDF in the specified
quantization ranges. The PDF is read in from a file assumed to be stored in direct access format.

There are no assumptions associated with the implementation or output of this program.
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will include a study of integrated compressor/coder system performance for
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OVERVIEW OF CLEAN

=> CLEAN is a simulation tool to investigate performance of codes in random
and non-random error environments.

=> Includes:
-> Random and non-random error sequence generation

*  Burst length distribution can be fixed, Gaussian, and Pois-
son

*  Burst interval distribution can be periodic, Gaussian, and
Poisson

*  Error density within the bursts and outside the bursts is user
selectable

-> Decoding Operations
*  Reed-Solomon ("black box effect")

*  BCH (the block decoder which implements the Reed-
Solomon code is completely general)

*  Viterbi (fully implemented Viterbi decoding algorithm)

-> Interleavers
*  Block Interleaver

* Periodic Convolutional Interleaver

->  Error Sequence Analysis Programs
*  Bursty-Error parameter estimation (DeltaEst, GAPEst)

*  Error distribution tests (Cramer Von-Mises)
*  Error Interval Histogram
*  Moving Average (MA) filter

->  Utilities/Theoretical function generation
*  EOS conversion

* Theoretical Error Interval for random errors
*  Many others



WHITE SANDS DATA RESULTS

The White Sands data
received from GSFC
indicates that the errors in the Ku-band downlink
are

RANDOM™

" A 60Hz fluctuation in the error density was found in some of the data sets.
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CRAMER VON-MISES (CVM) TEST STATISTICS

File Error Sequence | Number of Errors’
No. | Original Name Length CVM
Test Sta-
tistic
1 wser641621.dat 2,087,325 12 0.3684
3 | wser641716.dat 2,087,325 16 0.1457
5 | wser641837.dat 2,087,325 412 0.1609
8 | wser641908.dat 2,087,325 38 0.0433
13 | wsfler641932.dat 2,087,325 37184 2.4308
a | Critical Value
0.1 0.347
0.05 0.4610
0.025 0.5810
0.01 0.743
0.001 1.168
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CONCLUSIONS

The errors in the real EOS Ku-band downlink data are random

Reed-Solomon codes are efficient at correcting bursty errors (performance
improves as the error become clustered).

Reed-Solomon erasure decoding can significantly improve performance

In general, performance degrades as error become clustered for convolu-
tional codes and Viterbi decoding
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PUBLICATIONS

"Confidence Intervals for Simulations Using Reed-Solomon Codes", W.J.
Ebel, F.M. Ingels, MILCOM ’93, October 1993, accepted.

"Frame Synchronization for the NASA CCSDS Packet Telemetry Stan-
dard", W.J. Ebel, IEEE Transactions on Communications, to be submitted.
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GOALS

Integrate RICE compression/decompression algorithms into CLEAN
Acquire satellite data of RICE compressed/decompressed data from GSFC

Study BCH coding/compression performance with the acquired data

Investigate possible alternative coding/compression strategies which might
prove more efficient

Draw conclusions about achievable performance with the current proposed
system and alternative system configurations
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DATA COMPRESSION vs. DATA EXPANSION

Wi, e Wy Zy e Za] n >k

FEC
ENCODER

Expansion Factor = n/k

=> What is compression?  An algorithm which eliminates redundancy in a
data set so that the # of bits required to represent
that data set is minimized.

(X1 o X (Yoo Yy M <N
COMPRESSOR

Compression Ratio = (N/M):1

=> What types are there?
-> Lossless (Reversible Operation)
Huffman
RICE
Run Length Coding
White Block Skipping
Shift Code

-> Lossy (Not a Reversible Operation)
Transform
Vector Quantization



PERFORMANCE MEASURES/
CONCEPT ILLUSTRATION

=> How can we measure the performance of a compression algorithm?
Use the entropy of the data source as a figure of merit. If a compres-

sion algorithm performs near the entropy of the source, we conclude
that the algorithm is good.

=> The entropy of a data source is a measure of the randomness of the source
output. It’s numerical value is the average number of bits required to
represent each source symbol output.

=> For example:

Source Binary Output Huffman
Output Code Prob. Code
Xo 00 S 0
X, 01 25 10
X, 10 125 110
X, 11 125 111
Ave. Bit Length 2 b/sym 1.375 b/sym

The entropy, H(x), of this source is 1.375 bits/source symbol



COMPRESSION SCHEME ISSUES

Is lossless compression required, or can some data resolution be lost?

What compression ratios are achievable for the various compression
algorithms given YOUR data? Compression ratios are data dependent.

How will errors in the compressed data affect errors in the decompressed
data? Is it possible for error propagation 1o occur?

What are the source data characteristics?
Has the data been companded via a log function before compression?
If so, how will this affect the error statistics after decompression?

How will variable (unpredictable) blocklengths of compressed data affect
multiplexing/demuitiplexing operations? Will we have problems
finding the block boundaries after demultiplexing?

How can synchronization be achieved to locate compressed data
boundaries?
How might errors in the compressed data affect boundary detection?
How might errors in the compressed data affect ID or frame detection?

Note: Boundaries in the compressed data may exist to provide error
fruncation.

How fast can boundaries in the compressed data be detected given the error

probability output from the FEC decoder? How much data will be lost
before synchronization will occur?



RICE COMPRESSION

*=> Assumptions:

-> Source data has been preprocessed so that data samples entering the
compressor are independent.

-> Data samples entering the compressor have been relabeled
(renumbered) so that higher probability samples have smaller
numbers.

-> Parameters of each compression algorithm have been optimized for the
processed data statistics anticipated.

=> Architecture:

-> Operates on blocks of processed source data. Block sizes may be
determined a priori or may be determined on the fly.

-> The compression algorithm is composed of several simple compression
algorithms, each of which is designed to efficiently compress a
subset of the total span of possible data statistics.

O yo[X]=CFS[X]
O y,[X]=FS[X] (Golomb prefix code)
O yy[X]=CFS[X]
O yy[X]=X
O y,[X]=BC[X]= ID*yp[X]
-> Simple processing of the current processed data block determines. with

high probability, which algorithm will perform the best (near the
entropy of the data).

Operation:
-> Some processed data is partitioned into a data block.

-> A simplified algorithm is applied to the data block to determine which
simple compressor algorithm will perform the best.

-> The data block is compressed with that compressor.

-> The compressor outputs the total block of compressed which includes
the algorithm ID plus the compressed data (yal-D.

Notes:
-> The RICE compression algorithm is reversible (lossless). This does
not mean that the decompressed data will be error free!

-> If the data statistics during operation are not as expected, data
expansion can occur!
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AVERAGE PERFORMANCE OF EACH SIMPLE
COMPRESSOR’

i
|
|
! ;

(EXAMPLE WITH q = 20)

=
b3
q
o
A
o
9]
Z
2
o]
x
a
R
2
5 K T MEASUREMENT SPAN > J
< =
P = MEASURED AVERAGE PROBABILITY
DISTR!lBUTION OVER THE K SAMPLES
|
[ |
; !
i
| 5 |
0 | 2 3 4 5 )

MEASURED DATA ENTROPY, H(F) BITS/SAMPLE

“Taken from Rice, R.F., "Some Practical Universal Noiseless Coding Techniques",
JPL Pub. 79-22.p. 7



PITFALLS TO AVOID

The RICE algorithm partitions the original data into groups of 16 Samples
(optimum for a specific set of data). Is this optimum for YOUR data? If not,
the compression ratios for your data might be intolerably low!

The RICE algorithm assumes that the original source data has been prepro-
cessed so that samples are independent. Is true for the data input to the Loss-
less Image Compression Chip Set? YES! Has your data been successfully
preprocessed? If not, the compression ratios for your data might be intoler-
ably low! How can one determine if the samples are sufficiently indepen-
dent?

The RICE algorithm assumes that, even though the exact distribution for the
preprocessed data samples is unknown, the ORDERING of the probabilities
of the preprocessed data samples is roughly known. Do you know this order-
ing for YOUR data? If not, and you guess wrong, the compression ratios for
your data might be intolerably low! What if the probability ordering changes
as a function of time? The RICE compression algorithm allows compression
near the entropy for the processed data if the entropy of the processed data is
within some predetermined bounds. However, even if a block of your data
satisfies this entropy range, your compression may be a far cry from the
entropy IF your probability orderings are off base!

It is possible to over design the compressor. Suppose that your entropy
ranges are 3<H<5. Then to design a compressor which works on entropy
ranges O<H<8 is unnecessary and could very well complicate the decompres-
sion operation, resulting in higher sensitivity to errors, to the point where an
acceptable solution does not appear possible!

Does the decompression assume that there are not errors in the compressed
data? What happens if there are errors in the compressed data? There are
issues dealing with handling inconsistencies in the decoding operation which
must be dealt with for proper chip set operation.

Good performance of the RICE compression algorithm requires that the
expected variations in the data be well understood. It requires that highly
redundant portions of the data are carefully exploited. EVEN IF YOU HAVE
SUCCESSFULLY PREPROCESSED THE SOURCE DATA AND YOU
SUCCESSFULLY ORDER, BY RANKING THE PROBABILITIES, THE
PROCESSED DATA SAMPLES, THE RICE COMPRESSION ALGO-
RITHM MAY NOT PERFORM WELL! As an example, see compressor ..
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COMPRESSION/FEC INTEGRATION ISSUES

=> Are both a compressor and FEC required in the system to combat channel
errors and still provide the overall required compression?

=> What is the best way to integrate the compressor/FEC/interleaver within a
telemetry frame or packet? Stated another way, what telemetry format
constraints are placed on the system?

=> How much do the channel statistics vary (assuming they are not stationary)
with respect to a compressed block of data?

-> If an FEC is used, can it effectively correct errors resulting from
the extremes of the varying channel error statistics?

-> If not, how does one select a compression algorithm and FEC
which is compatible with the telemetry frame format and which

can also effectively correct the extremes of the statistically vary-
ing channel errors?

-> Is it possible that the problem is overly constrained?

=> What FEC and compression algorithm have similar architectures? Which

of those architectures are similar to the type of data output by the data
source?



ANALYSIS APPROACH

=> Simulation is the best approach for the analysis. Why?

-> Performance is strongly dependent upon data/channel statistics
which probably cannot be modeled mathematically.

-> The complexity of the overall system will, in all likelihood, not
result in tractable mathematics.

-> A simulation, designed to conduct trade studies, could be easily
adapted as a lab tool for performing, in software, compression of
data.

=> What should the simulation be able to do?

-> Perform the complete compression/decompression operations for
selected algorithms

-> Perform "black box" effects of the channel. This could be accom-
plished using:

- Real Channel error data
- CLASS simulated channel error data
- Simplified Mathematical models

-> Perform "black box" effects of various FECs.
-> Investigate synchronization issues
-> Investigate error propagation
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DESIGN APPROACH

What approach/strategy might a designer use to select a good integrated
compressor/FEC scheme taking into account the channel effects?
Try this...

First, study the compression algorithms in detail.
-> Determine the expected compression ratio with your data

-> Study the effects on the decompressed data when errors occur on the
compressed data.

-> Understand whether and to what extent error propagation might
occur.

Second, study the FECs/interleavers in detail.
-> Determine the type of errors each FEC is designed to correct.

-> Determine the type and density of errors output by each FEC given
the channel error statistics.

Third, study the channel to determine the type (random, bursty, mixed,
periodic) and density of errors expected.

Fourth, iterate as following:

-> Select a compression scheme so that the total effective compression
ratio (compressor compression ratio times the expansion factor of
the FEC) just meets the spec. Note: at first do not place an FEC in
the system design.

-> From studies previously conducted, determine whether errors in the
channel will result in acceptable performance for the decompressed
data.

-> If yes, the design is complete.

If no, choose an FEC to provide more error protection (this will
surely increase the FEC expansion factor).

Note: Best design will meet spec while minimizing hardware/algorithm
complexity, cost, size, weight, power, ... It might be helpful to choose a
compressor and FEC with similar algorithm architecture.

Note: It may not be possible to satisfy all the system requirements!



